Uniform convergence of penalized splines

被引:0
|
作者
Xiao, Luo [1 ]
Nan, Zhe [2 ]
机构
[1] North Carolina State Univ, Dept Stat, 2311 Stinson Dr,Campus Box 8203, Raleigh, NC 27695 USA
[2] Zhejiang Univ Technol, Dept Math, Hangzhou 310014, Peoples R China
来源
STAT | 2020年 / 9卷 / 01期
关键词
nonparametric regression; penalized splines; rate optimality; uniform convergence;
D O I
10.1002/sta4.297
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Penalized splines are popular for nonparametric regression. We establish the minimax rate optimality of penalized splines for uniform convergence, thus improving the existing rate in the literature. The result is applicable to several types of penalized splines that are commonly used and holds under mild conditions on the design points.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Spatially adaptive Bayesian penalized regression splines (P-splines)
    Baladandayuthapani, V
    Mallick, BK
    Carroll, RJ
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (02) : 378 - 394
  • [22] Application of Penalized Splines in Analyzing Neuronal Data
    Maringwa, John T.
    Faes, Christel
    Geys, Helena
    Molenberghs, Geert
    Cadarso-Suarez, Carmen
    Pardo-Vazquez, Jose L.
    Leboran, Victor
    Acuna, Carlos
    BIOMETRICAL JOURNAL, 2009, 51 (01) : 203 - 216
  • [23] Asymptotic properties of penalized splines for functional data
    Xiao, Luo
    BERNOULLI, 2020, 26 (04) : 2847 - 2875
  • [24] Penalized estimation of free-knot splines
    Lindstrom, MJ
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (02) : 333 - 352
  • [25] S-Estimation for Penalized Regression Splines
    Tharmaratnam, Kukatharmini
    Claeskens, Gerda
    Croux, Christophe
    Saubian-Barrera, Matias
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (03) : 609 - 625
  • [26] Smoothness Selection for Penalized Quantile Regression Splines
    Reiss, Philip T.
    Huang, Lei
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [27] INTENSITY ESTIMATION ON GEOMETRIC NETWORKS WITH PENALIZED SPLINES
    Schneble, Marc
    Kauermann, Goeran
    ANNALS OF APPLIED STATISTICS, 2022, 16 (02): : 843 - 865
  • [28] On semiparametric regression with O'Sullivan penalized splines
    Wand, M. P.
    Ormerod, J. T.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2008, 50 (02) : 179 - 198
  • [29] CONVERGENCE OF ABSTRACT SPLINES
    DEBOOR, C
    JOURNAL OF APPROXIMATION THEORY, 1981, 31 (01) : 80 - 89
  • [30] On the convergence of cardinal splines
    Madych, W. R.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 508 - 512