ON A SYSTEM OF FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN OPERATOR

被引:10
作者
Luca, Rodica [1 ]
机构
[1] Gh Asachi Tech Univ, Dept Math, 11 Blvd Carol I, Iasi 700506, Romania
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2019年 / 28卷 / 03期
关键词
Riemann-Liouville fractional differential equations; p-Laplacian operator; coupled multi-point boundary conditions; positive solutions; existence; nonexistence; DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.12732/dsa.v28i3.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with parameters and p-Laplacian operator, subject to coupled boundary conditions which contain intermediate points and fractional derivatives.
引用
收藏
页码:691 / 713
页数:23
相关论文
共 31 条
[1]   Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions [J].
Ahmad, Bashir ;
Luca, Rodica .
CHAOS SOLITONS & FRACTALS, 2017, 104 :378-388
[2]   On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
CHAOS SOLITONS & FRACTALS, 2016, 83 :234-241
[3]  
Arafa Aam, 2012, Nonlinear Biomed Phys, V6, P1, DOI 10.1186/1753-4631-6-1
[4]   Positive Solutions of Nonlinear Fractional Differential Equations with Integral Boundary Value Conditions [J].
Caballero, J. ;
Cabrera, I. ;
Sadarangani, K. .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[5]  
Cole K. S, 1993, COLD SPRING HARB SYM, P107
[6]  
Das S., 2008, Functional Fractional Calculus for System Identification and Controls
[7]   A fractional-order differential equation model of HIV infection of CD4+ T-cells [J].
Ding, Yongsheng ;
Ye, Haiping .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (3-4) :386-392
[8]   Fractional derivatives embody essential features of cell rheological behavior [J].
Djordjevic, VD ;
Jaric, J ;
Fabry, B ;
Fredberg, JJ ;
Stamenovic, D .
ANNALS OF BIOMEDICAL ENGINEERING, 2003, 31 (06) :692-699
[9]   Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal [J].
Ge, Zheng-Ming ;
Ou, Chan-Yi .
CHAOS SOLITONS & FRACTALS, 2008, 35 (04) :705-717
[10]   Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions [J].
Graef, John R. ;
Kong, Lingju ;
Kong, Qingkai ;
Wang, Min .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) :509-528