Erosion and redeposition of wall material in controlled fusion devices

被引:56
作者
Philipps, V
Wienhold, P
Kirschner, A
Rubel, M
机构
[1] Forschungszentrum Julich, Inst Plasma Phys, Assoc EURATOM, D-52425 Julich, Germany
[2] Royal Inst Technol, Alfven Lab, Assoc EUTATOM VR, S-10044 Stockholm, Sweden
关键词
magnetic fusion; erosion; deposition; material transport;
D O I
10.1016/S0042-207X(02)00238-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Processes of erosion and redeposition and their impact on plasma facing materials in devices for magnetically confined fusion are discussed. Volatile molecules formed in the erosion process are partly pumped out but the majority of species released from the wall components returns to the surface causing the modification of its morphology. Prompt redeposition and redeposition after global transport reduce the gross erosion at any surface. Detailed analysis shows that erosion and deposition can coexist on otherwise erosion-dominated surfaces due to local inhomogenities. The erosion yield of redeposited material of sub-monolayer thickness significantly differs from that observed for thick targets. On deposition dominated areas one observes the formation of thick co-deposits containing a mixture of trapped fuel atoms (hydrogen isotopes) and species removed originally from the wall. This leads to a large and long-term fuel accumulation (tritium inventory) in a device. Reduced mechanical integrity of such layers stimulates their flaking and peeling-off if a critical thickness has been reached. This, in turn, results in the formation of hydrogen-rich dust particles. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:399 / 408
页数:10
相关论文
共 50 条
  • [31] EROSION OF MATERIAL USED IN PETROLEUM PRODUCTION
    HAMZAH, R
    STEPHENSON, DJ
    STRUTT, JE
    [J]. WEAR, 1995, 186 (02) : 493 - 496
  • [32] Application of laser-induced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices
    Xiao, Q.
    Huber, A.
    Sergienko, G.
    Schweer, B.
    Mertens, Ph.
    Kubina, A.
    Philipps, V.
    Ding, H.
    [J]. FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) : 1813 - 1817
  • [33] Study of the erosion and redeposition of W considering the kinetic energy distribution of incident ions through a semi-analytical model
    Cappelli, L.
    Fedorczak, N.
    Gunn, J. P.
    Di Genova, S.
    Guterl, J.
    Serre, E.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (09)
  • [34] An assessment for the erosion rate of DEMO first wall
    Tokar, M. Z.
    [J]. NUCLEAR FUSION, 2018, 58 (01)
  • [35] Plasma-wall interactions with nitrogen seeding in all-metal fusion devices: Formation of nitrides and ammonia
    Oberkofler, Martin
    Alegre, D.
    Aumayr, F.
    Brezinsek, S.
    Dittmar, T.
    Dobes, K.
    Douai, D.
    Drenik, A.
    Koeppen, M.
    Kruezi, U.
    Linsmeier, Ch.
    Lungu, C. P.
    Meisl, G.
    Mozetic, M.
    Porosnicu, C.
    Rohde, V.
    Romanelli, S. G.
    [J]. FUSION ENGINEERING AND DESIGN, 2015, 98-99 : 1371 - 1374
  • [36] Application of the CPFD method to analyze the effects of bed material density on gas-particle hydrodynamics and wall erosion in a CFB boiler
    Lee, Byoung-Hwa
    Bae, Yoon-Ho
    Kim, Kang-Min
    Jiang, Yu
    Ahn, Young-Hun
    Jeon, Chung-Hwan
    [J]. FUEL, 2023, 342
  • [37] Nuclear micro-beam analysis of deuterium distribution in carbon fibre composites for controlled fusion devices
    Petersson, P.
    Kreter, A.
    Possnert, G.
    Rubel, M.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2010, 268 (11-12) : 1833 - 1837
  • [38] The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices
    Rubel, Marek
    Petersson, Per
    Alves, Eduardo
    Brezinsek, Sebastijan
    Coad, Joseph Paul
    Heinola, Kalle
    Mayer, Matej
    Widdowson, Anna
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 371 : 4 - 11
  • [39] Reduced model of high-Z impurity redeposition and erosion in tokamak divertor and its application to DIII-D experiments
    Guterl, J.
    Wampler, W. R.
    Rudakov, D.
    Abrams, T.
    Wang, H. Q.
    McLean, A. G.
    Snyder, P.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (12)
  • [40] ERO2.0 modelling of the effects of surface roughness on molybdenum erosion and redeposition in the PSI-2 linear plasma device
    Eksaeva, A.
    Borodin, D.
    Romazanov, J.
    Kreter, A.
    Pospieszczyk, A.
    Dickheuer, S.
    Moeller, S.
    Goeths, B.
    Rasinski, M.
    Knoche, U.
    Terra, A.
    Kirschner, A.
    Borodkina, I.
    Eichler, M.
    Unterberg, B.
    Brezinsek, S.
    Linsmeier, Ch
    Vassallo, E.
    Pedroni, M.
    Passoni, M.
    Dellasega, D.
    Sala, M.
    Romeo, F.
    Henderson, S.
    O'Mullane, M.
    Summers, H.
    Tskhakaya, D.
    Schmid, K.
    [J]. PHYSICA SCRIPTA, 2020, T171 (01)