Matrix equations AX ± XT AT = B over an arbitrary regular ring

被引:3
|
作者
Khan, Israr Ali [1 ]
Wang, Qing-Wen [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1 | 2009年
关键词
Matrix equation; Regular ring; Reflexive inverse of a matrix; Inner inverse of a matrix; SYSTEMS;
D O I
10.1145/1838002.1838049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the matrix equations AX +/- X(T) A(T) = B over R, an arbitrary regular ring with identity. Necessary and sufficient conditions for the existence and new expressions of the general solutions to the equations are derived.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [11] On the centro-symmetric solution of a system of matrix equations over a regular ring with identity
    Wang, Qingwen
    Chang, Haixia
    Lin, Chunyan
    ALGEBRA COLLOQUIUM, 2007, 14 (04) : 555 - 570
  • [12] Inverse problem for matrix equations YT AX = B
    1600, Hunan University, Changsha City, China (21):
  • [13] A system of matrix equations over regular rings
    Lin, Chun-Yan
    Wang, Qing-Wen
    Qin, Feng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2007, 38 (06): : 517 - 532
  • [14] Least-squares solutions of XT AX = B over positive semidefinite matrixes A
    Xie, DX
    Zhang, L
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (02) : 167 - 174
  • [15] THE SOLUTIONS OF MATRIX EQUATION AX = B OVER A MATRIX INEQUALITY CONSTRAINT
    Peng, Zhen-Yun
    Wang, Lin
    Peng, Jing-Jing
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (02) : 554 - 568
  • [16] CONSISTENCY OF QUATERNION MATRIX EQUATIONS AX* - XB = C AND X - AX*B = C*
    Liu, Xin
    Wang, Qing-Wen
    Zhang, Yang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 394 - 407
  • [17] Resolution of matrix equations over arbitrary Brouwerian lattices
    Han, Song-Chol
    Li, Hong-Xing
    Wang, Ha-Yin
    FUZZY SETS AND SYSTEMS, 2008, 159 (01) : 40 - 46
  • [18] THE MATRIX EQUATIONS AX=XA' AND B2=I
    VINOGRADE, B
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (06) : 463 - 463
  • [19] Quantum algorithm for solving matrix equations of the form AX = B
    Xu, Li
    Liu, Xiao-qi
    Liang, Jin-min
    Wang, Jing
    Li, Ming
    Shen, Shu-qian
    LASER PHYSICS LETTERS, 2022, 19 (05)
  • [20] The matrix diophantine equations AX
    Dzhaliuk, N. S.
    Petrychkovych, V. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2011, 3 (02) : 49 - 56