Statistical bubble localization with random interactions

被引:22
作者
Li, Xiaopeng [1 ]
Deng, Dong-Ling
Wu, Yang-Le
Das Sarma, S.
机构
[1] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
MANY-BODY LOCALIZATION; FERMIONS;
D O I
10.1103/PhysRevB.95.020201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study one-dimensional spinless fermions with random interactions, but without any on-site disorder. We find that random interactions generically stabilize a many-body localized phase, in spite of the completely extended single-particle degrees of freedom. In the large randomness limit, we construct "bubble-neck" eigenstates having a universal area-law entanglement entropy on average, with the number of volume-law states being exponentially suppressed. We argue that this statistical localization is beyond the phenomenological local-integrals-of-motion description of many-body localization. With exact diagonalization, we confirm the robustness of the many-body localized phase at finite randomness by investigating eigenstate properties such as level statistics, entanglement/participation entropies, and nonergodic quantum dynamics. At weak random interactions, the system develops a thermalization transition when the single-particle hopping becomes dominant.
引用
收藏
页数:5
相关论文
共 51 条
[11]   Constructing local integrals of motion in the many-body localized phase [J].
Chandran, Anushya ;
Kim, Isaac H. ;
Vidal, Guifre ;
Abanin, Dmitry A. .
PHYSICAL REVIEW B, 2015, 91 (08)
[12]   QUANTUM SIMULATION Exploring the many-body localization transition in two dimensions [J].
Choi, Jae-yoon ;
Hild, Sebastian ;
Zeiher, Johannes ;
Schauss, Peter ;
Rubio-Abadal, Antonio ;
Yefsah, Tarik ;
Khemani, Vedika ;
Huse, David A. ;
Bloch, Immanuel ;
Gross, Christian .
SCIENCE, 2016, 352 (6293) :1547-1552
[13]   Scenario for delocalization in translation-invariant systems [J].
De Roeck, Wojciech ;
Huveneers, Francois .
PHYSICAL REVIEW B, 2014, 90 (16)
[14]   Early Breakdown of Area-Law Entanglement at the Many-Body Delocalization Transition [J].
Devakul, Trithep ;
Singh, Rajiv R. P. .
PHYSICAL REVIEW LETTERS, 2015, 115 (18)
[15]  
Geraedts S. D., ARXIV160801328CONDMA
[16]   GENERALIZED HARD-CORE FERMIONS IN ONE-DIMENSION - AN EXACTLY SOLVABLE LUTTINGER LIQUID [J].
GOMEZSANTOS, G .
PHYSICAL REVIEW LETTERS, 1993, 70 (24) :3780-3783
[17]   Signatures of many-body localisation in a system without disorder and the relation to a glass transition [J].
Hickey, James M. ;
Genway, Sam ;
Garrahan, Juan P. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[18]   Phenomenology of fully many-body-localized systems [J].
Huse, David A. ;
Nandkishore, Rahul ;
Oganesyan, Vadim .
PHYSICAL REVIEW B, 2014, 90 (17)
[19]  
Hyatt K., ARXIV160107184CONDMA
[20]   On Many-Body Localization for Quantum Spin Chains [J].
Imbrie, John Z. .
JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (05) :998-1048