On superparacompact and Lindelof GO-spaces

被引:0
作者
Buhagiar, D
Miwa, T
机构
[1] Shimane Univ, Dept Math, Matsue, Shimane 6908504, Japan
[2] Shimane Univ, Dept Math, Matsue, Shimane 6908504, Japan
来源
HOUSTON JOURNAL OF MATHEMATICS | 1998年 / 24卷 / 03期
关键词
weakly superparacompact; superparacompact; Lindelof; GO-space; GO-uniformity; GO-d-extension;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
in this paper we study some compact/paracompact type prop erties, namely weak superparacompactness, superparacompactness and Lindelofness. Particular attention is given to GO-spaces. It is proved that a GO-space X is weakly superparacompact if and only if every gap is a W-gap and every pseudogap is a W-pseudogap. A characterization of Lindelof GO-spaces involving C-(pseudo)gaps is given. We also show that there is a 1-1 correspondence between superparacompact (resp. Lindelof) GO-d-extensions and preuniversal ODF (resp. prelindelof) GO-uniformities. Finally we give several examples corresponding to the above results.
引用
收藏
页码:443 / 457
页数:15
相关论文
共 46 条
[31]   A characterization of monotonically Lindelof generalized ordered spaces [J].
Gao, Yin-Zhu ;
Shi, Wei-Xue .
TOPOLOGY AND ITS APPLICATIONS, 2015, 196 :852-859
[32]   Some notes on quasi-Lindelof spaces [J].
Song, Yan-Kui .
QUAESTIONES MATHEMATICAE, 2017, 40 (07) :891-896
[33]   A result on monotonically Lindelof generalized ordered spaces [J].
Zhang, Guo-Fang ;
Xu, Ai-Jun .
QUAESTIONES MATHEMATICAE, 2016, 39 (06) :727-732
[34]   The monotone Lindelof property and separability in ordered spaces [J].
Bennett, H ;
Lutzer, D ;
Matveev, M .
TOPOLOGY AND ITS APPLICATIONS, 2005, 151 (1-3) :180-186
[35]   Lindelof spaces which are indestructible, productive, or D [J].
Aurichi, Leandro F. ;
Tall, Franklin D. .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (01) :331-340
[36]   Mappings and some decompositions of continuity on nearly Lindelof spaces [J].
Fawakhreh, AJ ;
Kiliçman, A .
ACTA MATHEMATICA HUNGARICA, 2002, 97 (03) :199-206
[37]   SPACES WITH σ-LOCALLY FINITE LINDELOF sn-NETWORKS [J].
Luong Quoc Tuyen .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2013, 93 (107) :145-152
[38]   Conditions which imply Lindelofness in star-Lindelof spaces [J].
Song, YK .
HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (03) :809-813
[39]   On the resolvability of Lindelof-generated and (countable extent)-generated spaces [J].
Juhasz, Istvan ;
Soukup, Lajos ;
Szentmiklossy, Zoltan .
TOPOLOGY AND ITS APPLICATIONS, 2019, 259 :267-274
[40]   Lindelof spaces which are Menger, Hurewicz, Alster, productive, or D [J].
Tall, Franklin D. .
TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (18) :2556-2563