GEOMETRY AND SPECTRUM IN 2D MAGNETIC WELLS

被引:31
作者
Raymond, Nicolas [1 ]
San Vu Ngoc [1 ]
机构
[1] Univ Rennes 1, IRMAR, UMR 6625, Campus Beaulieu, F-35042 Rennes, France
关键词
magnetic field; normal form; spectral theory; semiclassical limit; Hamiltonian flow; microlocal analysis; SEMICLASSICAL ANALYSIS; SCHRODINGER OPERATOR; NEUMANN LAPLACIAN; ASYMPTOTICS; FIELD; BOTTLES;
D O I
10.5802/aif.2927
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the classical mechanics and spectral analysis of a pure magnetic Hamiltonian in R-2. It is established that both the dynamics and the semiclassical spectral theory can be treated through a Birkhoff normal form and reduced to the study of a family of one dimensional Hamiltonians. As a corollary, recent results by Helffer-Kordyukov are extended to higher energies.
引用
收藏
页码:137 / 169
页数:33
相关论文
共 38 条
[1]  
AGMON S, 1985, LECT NOTES MATH, V1159, P1
[2]  
Agmon S., 1982, MATH NOTES, V29, P118
[3]  
[Anonymous], Schrodinger operators with application to quantum mechanics and global geometry
[4]  
[Anonymous], 1998, OXFORD MATH MONOGRAP
[5]  
ARNOLD V. I., 1997, T MAT I STEKLOVA, V216, P9
[6]   Spectral asymptotics via the semiclassical Birkhoff normal form [J].
Charles, Laurent ;
Ngoc, San Vu .
DUKE MATHEMATICAL JOURNAL, 2008, 143 (03) :463-511
[7]   THE WEYL ASYMPTOTIC FOR MAGNETIC BOTTLES [J].
DEVERDIERE, YC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (02) :327-335
[8]  
Dimassi Mouez., 1999, London Math. Soc, V268, P227, DOI DOI 10.1017/CBO9780511662195
[9]   Semiclassical Analysis with Vanishing Magnetic Fields [J].
Dombrowski, Nicolas ;
Raymond, Nicolas .
JOURNAL OF SPECTRAL THEORY, 2013, 3 (03) :423-464
[10]   Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian [J].
Fournais, S ;
Helffer, B .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (01) :1-67