Global convergence properties of the two new dependent Fletcher-Reeves conjugate gradient methods

被引:2
作者
Wang, Chang-yu
Lian, Shu-jun [1 ]
机构
[1] Qufu Normal Univ, Coll Operat & Management, Qufu 273165, Shangdong, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
关键词
conjugate gradient method; line search; global convergence;
D O I
10.1016/j.amc.2006.01.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose two new dependent Fletcher-Reeves conjugate gradient methods arising from different choice for the scalar beta(k). We make two different kinds of estimations of upper bounds of vertical bar beta(k)vertical bar with respect to beta(FR)(k), which are based on Abel Theorem of non-convergent series of positive items. With several different line searches, global convergence results are established for the two new methods which extend the previous dependent Fletcher-Reeves conjugate gradient methods. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:920 / 931
页数:12
相关论文
共 50 条
  • [31] A Convex combination of improved Fletcher-Reeves and Rivaie-Mustafa-Ismail-Leong conjugate gradient methods for unconstrained optimization problems and applications
    Diphofu, T.
    Kaelo, P.
    Kooepile-Reikeletseng, S.
    Koorapetse, M.
    Sam, C. R.
    QUAESTIONES MATHEMATICAE, 2024, 47 (12) : 2375 - 2397
  • [32] CONVERGENCE PROPERTIES OF THE DEPENDENT PRP CONJUGATE GRADIENT METHODS
    Shujun LIAN Department of Mathematics
    College of Operations and Management
    Journal of Systems Science & Complexity, 2006, (02) : 288 - 296
  • [33] Convergence properties of the dependent PRP conjugate gradient methods
    Lian S.
    Wang C.
    Cao L.
    Journal of Systems Science and Complexity, 2006, 19 (2) : 288 - 296
  • [34] A NEW CONJUGATE GRADIENT METHOD AND ITS GLOBAL CONVERGENCE PROPERTIES
    LI Zhengfeng CHEN Jing DENG Naiyang(Division of Basic Sciences
    SystemsScienceandMathematicalSciences, 1998, (01) : 53 - 60
  • [35] Global Convergence Properties of Conjugate Gradient Methods for Optimal Control Problems
    Chen Xuesong
    Cai Shuting
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2542 - 2547
  • [36] The Global Convergence of a New Spectral Conjugate Gradient Method
    Zeng, W. Q.
    Liu, H. L.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2015), 2015, 123 : 484 - 487
  • [37] Convergence properties of a class of nonlinear conjugate gradient methods
    Liu, Jinkui
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (11) : 2656 - 2661
  • [38] Global Convergence of Conjugate Gradient Methods without Line Search
    Cuiling CHEN
    Yu CHEN
    Journal of Mathematical Research with Applications, 2018, 38 (05) : 541 - 550
  • [39] The Global Convergence Properties of a Conjugate Gradient Method
    Omer, Osman
    Mamat, Mustafa
    Abashar, Abdelrhaman
    Rivaie, Mohd
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 286 - 295
  • [40] The convergence properties of some new conjugate gradient methods
    Wei, Zengxin
    Yao, Shengwei
    Liu, Liying
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) : 1341 - 1350