On existence of periodic solutions of Rayleigh equation of retarded type

被引:14
|
作者
Zhou, Yinggao [1 ]
Tang, Xianhua [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Rayleigh equations; periodic solution; priori estimate;
D O I
10.1016/j.cam.2006.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence of periodic solutions for a kind of non-autonomous Rayleigh equations of retarded type [GRAPHICS] is studied, and some new results are obtained. Our work generalizes and improves the known results in the literature. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [11] ON EXISTENCE OF PERIODIC SOLUTIONS OF THE KDV TYPE EQUATION
    Imanaliev, T. M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2011, 1 (02): : 167 - 172
  • [12] Existence of periodic solutions for p-Laplacian neutral Rayleigh equation
    He, Zhi Min
    Shen, Jian Hua
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [13] Existence an duniquenessof periodic solutions for a kind of Rayleigh equation with a deviating argument
    Zhou, Qiyuan
    Xiao, Bing
    Yu, Yuehua
    Liu, Bingwen
    Huang, Lihong
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (03) : 673 - 682
  • [14] Existence of periodic solutions for p-Laplacian neutral Rayleigh equation
    Zhi Min He
    Jian Hua Shen
    Advances in Difference Equations, 2014
  • [15] On existence of positive periodic solutions of a kind of Rayleigh equation with a deviating argument
    Yinggao Zhou
    Min Wu
    Applications of Mathematics, 2010, 55 : 189 - 196
  • [16] ON EXISTENCE OF POSITIVE PERIODIC SOLUTIONS OF A KIND OF RAYLEIGH EQUATION WITH A DEVIATING ARGUMENT
    Zhou, Yinggao
    Wu, Min
    APPLICATIONS OF MATHEMATICS, 2010, 55 (03) : 189 - 196
  • [17] On periodic solutions of Rayleigh equation
    Tlyachev, V. B.
    Ushkho, A. D.
    Ushkho, D. S.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2021, 21 (02): : 173 - 181
  • [18] ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR LIENARD TYPE φ-LAPLACIAN EQUATION
    Yang, Congmin
    Wang, Zaihong
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 62 (01) : 219 - 237
  • [19] On the existence of periodic solutions of Rayleigh equations
    Zaihong Wang
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 592 - 608
  • [20] On the existence of periodic solutions of Rayleigh equations
    Wang, ZH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (04): : 592 - 608