On existence of periodic solutions of Rayleigh equation of retarded type

被引:14
作者
Zhou, Yinggao [1 ]
Tang, Xianhua [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Rayleigh equations; periodic solution; priori estimate;
D O I
10.1016/j.cam.2006.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence of periodic solutions for a kind of non-autonomous Rayleigh equations of retarded type [GRAPHICS] is studied, and some new results are obtained. Our work generalizes and improves the known results in the literature. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 11 条
  • [1] Chen F. D., 2001, ANN DIFFERENTIAL EQU, V17, P1
  • [2] [陈凤德 Chen Fengde], 2005, [应用数学学报, Acta Mathematicae Applicatae Sinica], V28, P55
  • [3] Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
  • [4] Gains R. E., 1977, LECT NOTES MATH, V568
  • [5] Liu F., 1994, ACTA MATH SINICA, V37, P639
  • [6] [鲁世平 Lu Shiping], 2004, [数学学报, Acta Mathematica Sinica], V47, P299
  • [7] Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument
    Lu, SP
    Ge, WG
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) : 501 - 514
  • [8] Periodic solutions for a kind of Rayleigh equation with a deviating argument
    Lu, SP
    Ge, WG
    Zheng, ZX
    [J]. APPLIED MATHEMATICS LETTERS, 2004, 17 (04) : 443 - 449
  • [9] Wang G, 2000, INT J MATH MATH SCI, V23, P65
  • [10] Wang G. Q., 2000, PORT MATH, V57, P153