Quantum chaos, random matrix theory, statistical mechanics in two dimensions, and the second law - A case study

被引:24
作者
Jain, SR
Alonso, D
机构
[1] FREE UNIV BRUSSELS,CTR NONLINEAR PHENOMENA & COMPLEX SYST,B-1050 BRUSSELS,BELGIUM
[2] UNIV LA LAGUNA,DEPT FIS FUNDAMENTAL,LA LAGUNA 38204,TENERIFE,SPAIN
[3] UNIV LA LAGUNA,EXPT FAC FIS,LA LAGUNA 38204,TENERIFE,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 14期
关键词
D O I
10.1088/0305-4470/30/14/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a theory where the statistical mechanics for dilute ideal gases can be derived from the random matrix approach. We show the connection of this approach with the Srednicki approach which connects Berry conjecture with statistical mechanics. We further establish a link between Berry conjecture and random matrix theory. In the course of arguing for these connections, we also observe sum rules associated with the outstanding counting problem in the theory of Braid groups. We believe that these arguments, developed for a special example connecting the properties of eigenfunctions and random matrices to the second law of thermodynamics, will eventually prove co be more general.
引用
收藏
页码:4993 / 5005
页数:13
相关论文
共 54 条
[1]   Quantum chaos in terms of entropy for a periodically kicked top [J].
Alicki, R ;
Makowiec, D ;
Miklaszewski, W .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :838-841
[2]   From random matrix theory to statistical mechanics - Anyon gas [J].
Alonso, D ;
Jain, SR .
PHYSICS LETTERS B, 1996, 387 (04) :812-816
[3]   SUPERSYMMETRY APPLIED TO THE SPECTRUM EDGE OF RANDOM-MATRIX ENSEMBLES [J].
ANDREEV, AV ;
SIMONS, BD ;
TANIGUCHI, N .
NUCLEAR PHYSICS B, 1994, 432 (03) :487-517
[4]   STATISTICAL-MECHANICS OF ANIONS [J].
AROVAS, DP ;
SCHRIEFFER, R ;
WILCZEK, F ;
ZEE, A .
NUCLEAR PHYSICS B, 1985, 251 (01) :117-126
[5]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[6]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[8]  
BIRMAN JS, 1986, CONT MATH BRAIDS P S, V78, P573
[9]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[10]   THE ALGEBRAICAL BRAID GROUP [J].
BOHNENBLUST, F .
ANNALS OF MATHEMATICS, 1947, 48 (01) :127-136