Pyrolysis of sewage sludge in a fixed and a bubbling fluidized bed - Estimation and experimental validation of the pyrolysis time

被引:40
作者
Soria-Verdugo, Antonio [1 ]
Morato-Godino, Andres [1 ]
Miguel Garcia-Gutierrez, Luis [1 ]
Garcia-Hernando, Nestor [1 ]
机构
[1] Carlos III Univ Madrid Spain, Energy Syst Engn Grp, Thermal & Fluids Engn Dept, Avda Univ 30, Madrid 28911, Spain
关键词
Sewage sludge; Pyrolysis; Fixed bed; Fluidized bed; Pyrolysis time; FLASH PYROLYSIS; TEMPERATURE; COMBUSTION; RECOVERY; KINETICS; BIOMASS; OBJECT;
D O I
10.1016/j.enconman.2017.04.062
中图分类号
O414.1 [热力学];
学科分类号
摘要
Pyrolysis of sewage sludge was studied experimentally in a stainless-steel reactor operated as a fixed or fluidized bed. A novel measuring technique, consisting of measuring the mass of the whole reactor and the sample on a scale, was applied. The scale was capable of measuring the whole mass of the reactor with enough accuracy to detect the mass released by the sewage sludge sample during its pyrolysis. This original measuring technique permitted the measurement of the evolution over time of the mass of sewage sludge supplied to the bed in batch during its pyrolysis while moving freely in the bed. From the measurement of the mass of the solid residue remaining in the reactor, the pyrolysis time of the sewage sludge sample can be obtained accurately for each operating condition. Different operating conditions were selected to analyze the evolution with time of the sample mass during the pyrolysis process, including the bed temperature and the velocity of the Nitrogen used as inert gas. An increase of the velocity of Nitrogen from that of a fixed bed (0.8U(m)) to that of a low velocity bubbling fluidized bed (2.5U(mf)) accelerates remarkably the pyrolysis process, i.e. reduces the pyrolysis time, however increasing the Nitrogen velocity further has a slight effect on the characteristic velocity of the pyrolysis process. The pyrolysis process of sewage sludge can also be accelerated by increasing the bed temperature, even though the effect of the temperature is lower than that of the Nitrogen velocity. Furthermore, a mathematical model based on a first order apparent kinetics for the pyrolysis of sewage sludge was proposed. The model was employed to estimate the pyrolysis time for each operating condition, obtaining a proper agreement with the experimental measurements. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:235 / 242
页数:8
相关论文
共 37 条
[1]   Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor [J].
Alvarez, Jon ;
Amutio, Maider ;
Lopez, Gartzen ;
Barbarias, Itsaso ;
Bilbao, Javier ;
Olazar, Martin .
CHEMICAL ENGINEERING JOURNAL, 2015, 273 :173-183
[2]  
[Anonymous], 2015, MATH PROBL ENG
[3]  
Arazo RO, 2017, SUSTAIN ENVIRON RES, V27, P7, DOI 10.1016/j.serj.2016.11.010
[4]   Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor [J].
Atienza-Martinez, M. ;
Fonts, I. ;
Lazaro, L. ;
Ceamanos, J. ;
Gea, G. .
CHEMICAL ENGINEERING JOURNAL, 2015, 259 :467-480
[5]   Review of fast pyrolysis of biomass and product upgrading [J].
Bridgwater, A. V. .
BIOMASS & BIOENERGY, 2012, 38 :68-94
[6]   Fast pyrolysis processes for biomass [J].
Bridgwater, AV ;
Peacocke, GVC .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2000, 4 (01) :1-73
[7]   An overview of fast pyrolysis of biomass [J].
Bridgwater, AV ;
Meier, D ;
Radlein, D .
ORGANIC GEOCHEMISTRY, 1999, 30 (12) :1479-1493
[8]  
Carman P.C., 1937, Trans. Inst. Chem. Eng. London, V15, P150, DOI DOI 10.1016/S0263-8762(97)80003-2
[9]   Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA) [J].
Damartzis, Th ;
Vamvuka, D. ;
Sfakiotakis, S. ;
Zabaniotou, A. .
BIORESOURCE TECHNOLOGY, 2011, 102 (10) :6230-6238
[10]   Sewage sludge pyrolysis in fluidized bed, 1:: Influence of operational conditions on the product distribution [J].
Fonts, Isabel ;
Juan, Alfonso ;
Gea, Gloria ;
Murillo, Maria B. ;
Sanchez, Jose L. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (15) :5376-5385