Prediction of plant species distribution in lowland river valleys in Belgium: modelling species response to site conditions

被引:55
作者
Bio, AMF
De Becker, P
De Bie, E
Huybrechts, W
Wassen, M
机构
[1] Univ Tecn Lisboa, IST, CMRP, Ctr Modelling Petr Reservoirs,Environm Grp, P-1049001 Lisbon, Portugal
[2] Inst Nat Conservat, B-1070 Brussels, Belgium
[3] Univ Utrecht, Fac Geog Sci, Dept Environm Sci, NL-3508 TC Utrecht, Netherlands
关键词
autocorrelation; generalized additive model(ling); generalized linear model(ling); phreatophytes; spatial autocorrelation; spatial variability;
D O I
10.1023/A:1021346712677
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
In ecological modelling, limitations in data and their applicability for predictive modelling are more rule than exception. Often modelling has to be performed on sub-optimal data, as explicit and controlled collection of ( more) appropriate data would not be feasible. An example of predictive ecological modelling is given with application of generalized additive and generalized linear models fitted to presence - absence records of plant species and site condition data from four nutrient-poor Flemish lowland valleys. Standard regression procedures are used for modelling, although explanatory and response data do not meet all the assumptions implicit in these procedures. Data were non-randomly collected and are spatially autocorrelated; model residuals retain part of that correlation. The scale of most site-condition records does not match the scale of the response variable ( species distribution). Hence, interpolated and up-scaled explanatory variables are used. Data are aggregated from distinct phytogeographical regions to allow for generalized models, applicable to a wider population of river valleys in the same region. Nevertheless, ecologically sound models are obtained, which predict well the distribution of most plant species for the Flemish river valleys considered.
引用
收藏
页码:2189 / 2216
页数:28
相关论文
共 88 条