On the rate of convergence of the Legendre spectral collocation method for multi-dimensional nonlinear Volterra-Fredholm integral equations

被引:19
作者
Elkot, Nermeen A. [1 ]
Zaky, Mahmoud A. [2 ]
Doha, Eid H. [1 ]
Ameen, Ibrahem G. [3 ]
机构
[1] Cairo Univ, Dept Math, Fac Sci, Giza 12613, Egypt
[2] Natl Res Ctr, Dept Appl Math, Cairo 12622, Egypt
[3] Al Azhar Univ, Dept Math, Fac Sci, Cairo, Egypt
关键词
spectral collocation method; convergence analysis; multi-dimensional integral equations;
D O I
10.1088/1572-9494/abcfb3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kernels are now well understood, no systematic studies of the numerical solutions of their multi-dimensional counterparts exist. In this paper, we provide an efficient numerical approach for the multi-dimensional nonlinear Volterra-Fredholm integral equations based on the multi-variate Legendre-collocation approach. Spectral collocation methods for multi-dimensional nonlinear integral equations are known to cause major difficulties from a convergence analysis point of view. Consequently, rigorous error estimates are provided in the weighted Sobolev space showing the exponential decay of the numerical errors. The existence and uniqueness of the numerical solution are established. Numerical experiments are provided to support the theoretical convergence analysis. The results indicate that our spectral collocation method is more flexible with better accuracy than the existing ones.
引用
收藏
页数:12
相关论文
共 32 条
[1]   Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series [J].
Ali, Khalid K. ;
Abd El Salam, Mohamed A. ;
Mohamed, Emad M. H. ;
Samet, Bessem ;
Kumar, Sunil ;
Osman, M. S. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[2]   A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra-Fredholm integral equations [J].
Amiri, Sadegh ;
Hajipour, Mojtaba ;
Baleanu, Dumitru .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 370
[3]   A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis [J].
Assari, Pouria ;
Adibi, Hojatollah ;
Dehghan, Mehdi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 :72-92
[4]   Bernoulli operational matrix method for the numerical solution of nonlinear two-dimensional Volterra-Fredholm integral equations of Hammerstein type [J].
Bazm, Sohrab ;
Hosseini, Alireza .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02)
[5]   hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations [J].
Brunner, H ;
Schötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :224-245
[6]   ON THE NUMERICAL-SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS BY COLLOCATION METHODS [J].
BRUNNER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :987-1000
[7]   CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH A WEAKLY SINGULAR KERNEL [J].
Chen, Yanping ;
Tang, Tao .
MATHEMATICS OF COMPUTATION, 2010, 79 (269) :147-167
[8]   Spectral Solutions for Differential and Integral Equations with Varying Coefficients Using Classical Orthogonal Polynomials [J].
Doha, E. H. ;
Youssri, Y. H. ;
Zaky, M. A. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (02) :527-555
[9]   Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations [J].
Doha, E. H. ;
Abdelkawy, M. A. ;
Amin, A. Z. M. ;
Lopes, Antonio M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 :342-359
[10]   Chebyshev spectral collocation method for system of nonlinear Volterra integral equations [J].
Gu, Zhendong .
NUMERICAL ALGORITHMS, 2020, 83 (01) :243-263