Tail dependence functions and vine copulas

被引:178
作者
Joe, Harry [2 ]
Li, Haijun [1 ]
Nikoloulopoulos, Aristidis K. [2 ]
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
[2] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Archimedean copulas; Conditional tail; D-vine; C-vine; Extreme value; EXTREME-VALUE DISTRIBUTIONS; RANDOM-VARIABLES; MULTIVARIATE; VERSIONS; FAMILY;
D O I
10.1016/j.jmva.2009.08.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Tail dependence and conditional tail dependence functions describe, respectively, the tail probabilities and conditional tail probabilities Of a Copula at various relative scales. The properties as well as the interplay of these two functions are established based upon their homogeneous structures. The extremal dependence of a, copula, as described by its extreme Value copulas, is shown to be completely determined by its tail dependence functions. For a vine Copula built from a set of bivariate copulas, its tail dependence function can be expressed recursively by the tail dependence and conditional tail dependence functions of lower-dimensional margins. The effect of tail dependence of bivariate linking copulas on that of a vine copula is also investigated. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:252 / 270
页数:19
相关论文
共 26 条
[11]   On the extremal dependence coefficient of multivariate distributions [J].
Frahm, Gabriel .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (14) :1470-1481
[12]   A CHARACTERIZATION OF GUMBEL FAMILY OF EXTREME VALUE DISTRIBUTIONS [J].
GENEST, C ;
RIVEST, LP .
STATISTICS & PROBABILITY LETTERS, 1989, 8 (03) :207-211
[13]   Asymmetries in stock returns: Statistical tests and economic evaluation [J].
Hong, Yongmiao ;
Tu, Jun ;
Zhou, Guofu .
REVIEW OF FINANCIAL STUDIES, 2007, 20 (05) :1547-1581
[14]  
Joe H., 1996, DISTRIBUTIONS FIXED, V128, P120, DOI 10.1214/LNMS/1215452614
[15]   UNIFORM REPRESENTATION OF BIVARIATE DISTRIBUTIONS [J].
KIMELDORF, G ;
SAMPSON, A .
COMMUNICATIONS IN STATISTICS, 1975, 4 (07) :617-627
[16]   Semi-Parametric Models for the Multivariate Tail Dependence Function - the Asymptotically Dependent Case [J].
Klueppelberg, Claudia ;
Kuhn, Gabriel ;
Peng, Liang .
SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (04) :701-718
[17]   Orthant tail dependence of multivariate extreme value distributions [J].
Li, Haijun .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) :243-256
[18]   MULTIVARIATE PARETO DISTRIBUTIONS [J].
MARDIA, KV .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1008-&
[19]   Extreme value properties of multivariate t copulas [J].
Nikoloulopoulos, Aristidis K. ;
Joe, Harry ;
Li, Haijun .
EXTREMES, 2009, 12 (02) :129-148
[20]  
Resnick S. I., 1987, Extreme Values, V4