Tail dependence functions and vine copulas

被引:178
作者
Joe, Harry [2 ]
Li, Haijun [1 ]
Nikoloulopoulos, Aristidis K. [2 ]
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
[2] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Archimedean copulas; Conditional tail; D-vine; C-vine; Extreme value; EXTREME-VALUE DISTRIBUTIONS; RANDOM-VARIABLES; MULTIVARIATE; VERSIONS; FAMILY;
D O I
10.1016/j.jmva.2009.08.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Tail dependence and conditional tail dependence functions describe, respectively, the tail probabilities and conditional tail probabilities Of a Copula at various relative scales. The properties as well as the interplay of these two functions are established based upon their homogeneous structures. The extremal dependence of a, copula, as described by its extreme Value copulas, is shown to be completely determined by its tail dependence functions. For a vine Copula built from a set of bivariate copulas, its tail dependence function can be expressed recursively by the tail dependence and conditional tail dependence functions of lower-dimensional margins. The effect of tail dependence of bivariate linking copulas on that of a vine copula is also investigated. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:252 / 270
页数:19
相关论文
共 26 条
[1]   Pair-copula constructions of multiple dependence [J].
Aas, Kjersti ;
Czado, Claudia ;
Frigessi, Arnoldo ;
Bakken, Henrik .
INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02) :182-198
[2]   Asymmetric correlations of equity portfolios [J].
Ang, A ;
Chen, J .
JOURNAL OF FINANCIAL ECONOMICS, 2002, 63 (03) :443-494
[3]  
[Anonymous], 2006, UNCERTAINTY ANAL HIG, DOI DOI 10.1002/0470863072
[4]  
[Anonymous], 1997, MULTIVARIATE MODELS
[5]  
[Anonymous], 2006, Extremes, DOI DOI 10.1007/S10687-006-0015-X
[6]  
[Anonymous], 1984, Methods of Numerical Integration
[7]  
Bedford T, 2002, ANN STAT, V30, P1031
[8]   Probability density decomposition for conditionally dependent random variables modeled by vines [J].
Bedford, T ;
Cooke, RM .
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2001, 32 (1-4) :245-268
[9]  
COOK RD, 1981, J ROY STAT SOC B MET, V43, P210
[10]  
Embrechts P, 2003, HANDBOOKS FINANCE, P329, DOI 10.1016/B978-044450896-6.50010-8