CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks

被引:350
作者
Zhong, Ellen D. [1 ,2 ]
Bepler, Tristan [1 ,2 ]
Berger, Bonnie [2 ,3 ]
Davis, Joseph H. [1 ,4 ]
机构
[1] MIT, Computat & Syst Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] MIT, Dept Biol, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
VISUALIZATION; MICROSCOPY;
D O I
10.1038/s41592-020-01049-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cryo-electron microscopy (cryo-EM) single-particle analysis has proven powerful in determining the structures of rigid macromolecules. However, many imaged protein complexes exhibit conformational and compositional heterogeneity that poses a major challenge to existing three-dimensional reconstruction methods. Here, we present cryoDRGN, an algorithm that leverages the representation power of deep neural networks to directly reconstruct continuous distributions of 3D density maps and map per-particle heterogeneity of single-particle cryo-EM datasets. Using cryoDRGN, we uncovered residual heterogeneity in high-resolution datasets of the 80S ribosome and the RAG complex, revealed a new structural state of the assembling 50S ribosome, and visualized large-scale continuous motions of a spliceosome complex. CryoDRGN contains interactive tools to visualize a dataset's distribution of per-particle variability, generate density maps for exploratory analysis, extract particle subsets for use with other tools and generate trajectories to visualize molecular motions. CryoDRGN is open-source software freely available at http://cryodrgn.csail.mit.edu.
引用
收藏
页码:176 / +
页数:26
相关论文
共 52 条
[1]   Cryo-EM structure of the large subunit of the spinach chloroplast ribosome [J].
Ahmed, Tofayel ;
Yin, Zhan ;
Bhushan, Shashi .
SCIENTIFIC REPORTS, 2016, 6
[2]  
[Anonymous], 2019, PYMOL MOL GRAPHICS S
[3]   Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency [J].
Bammes, Benjamin E. ;
Rochat, Ryan H. ;
Jakana, Joanita ;
Chen, Dong-Hua ;
Chiu, Wah .
JOURNAL OF STRUCTURAL BIOLOGY, 2012, 177 (03) :589-601
[4]  
Bepler T, 2019, ADV NEUR IN, V32
[5]   Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs [J].
Bepler, Tristan ;
Morin, Andrew ;
Rapp, Micah ;
Brasch, Julia ;
Shapiro, Lawrence ;
Noble, Alex J. ;
Berger, Bonnie .
NATURE METHODS, 2019, 16 (11) :1153-+
[6]  
Bracewell R.N., 1956, Australian Journal of Physics, V9, P198, DOI [DOI 10.1071/PH560198, 10.1071/PH560198]
[7]  
Brubaker MA, 2015, PROC CVPR IEEE, P3099, DOI 10.1109/CVPR.2015.7298929
[8]   Single-particle cryo-EM-How did it get here and where will it go [J].
Cheng, Yifan .
SCIENCE, 2018, 361 (6405) :876-+
[9]   Trajectories of the ribosome as a Brownian nanomachine [J].
Dashti, Ali ;
Schwander, Peter ;
Langlois, Robert ;
Fung, Russell ;
Li, Wen ;
Hosseinizadeh, Ahmad ;
Liao, Hstau Y. ;
Pallesen, Jesper ;
Sharma, Gyanesh ;
Stupina, Vera A. ;
Simon, Anne E. ;
Dinman, Jonathan D. ;
Frank, Joachim ;
Ourmazd, Abbas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (49) :17492-17497
[10]   Modular Assembly of the Bacterial Large Ribosomal Subunit [J].
Davis, Joseph H. ;
Tan, Yong Zi ;
Carragher, Bridget ;
Potter, Clinton S. ;
Lyumkis, Dmitry ;
Williamson, James R. .
CELL, 2016, 167 (06) :1610-+