CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks

被引:297
|
作者
Zhong, Ellen D. [1 ,2 ]
Bepler, Tristan [1 ,2 ]
Berger, Bonnie [2 ,3 ]
Davis, Joseph H. [1 ,4 ]
机构
[1] MIT, Computat & Syst Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] MIT, Dept Biol, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
VISUALIZATION; MICROSCOPY;
D O I
10.1038/s41592-020-01049-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cryo-electron microscopy (cryo-EM) single-particle analysis has proven powerful in determining the structures of rigid macromolecules. However, many imaged protein complexes exhibit conformational and compositional heterogeneity that poses a major challenge to existing three-dimensional reconstruction methods. Here, we present cryoDRGN, an algorithm that leverages the representation power of deep neural networks to directly reconstruct continuous distributions of 3D density maps and map per-particle heterogeneity of single-particle cryo-EM datasets. Using cryoDRGN, we uncovered residual heterogeneity in high-resolution datasets of the 80S ribosome and the RAG complex, revealed a new structural state of the assembling 50S ribosome, and visualized large-scale continuous motions of a spliceosome complex. CryoDRGN contains interactive tools to visualize a dataset's distribution of per-particle variability, generate density maps for exploratory analysis, extract particle subsets for use with other tools and generate trajectories to visualize molecular motions. CryoDRGN is open-source software freely available at http://cryodrgn.csail.mit.edu.
引用
收藏
页码:176 / +
页数:26
相关论文
共 50 条
  • [1] CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks
    Ellen D. Zhong
    Tristan Bepler
    Bonnie Berger
    Joseph H. Davis
    Nature Methods, 2021, 18 : 176 - 185
  • [2] CryoDRGN2: Ab initio neural reconstruction of 3D protein structures from real cryo-EM images
    Zhong, Ellen D.
    Lerer, Adam
    Davis, Joseph H.
    Berger, Bonnie
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4046 - 4055
  • [3] Amortized Inference for Heterogeneous Reconstruction in Cryo-EM
    Levy, Axel
    Wetzstein, Gordon
    Martel, Julien
    Poitevin, Frederic
    Zhong, Ellen D.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [4] Spectral decomposition of atomic structures in heterogeneous cryo-EM
    Esteve-Yague, Carlos
    Diepeveen, Willem
    Oktem, Ozan
    Schonlieb, Carola-Bibiane
    INVERSE PROBLEMS, 2023, 39 (03)
  • [5] Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN
    Kinman, Laurel F.
    Powell, Barrett M.
    Zhong, Ellen D.
    Berger, Bonnie
    Davis, Joseph H.
    NATURE PROTOCOLS, 2023, 18 (02) : 319 - +
  • [6] Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN
    Laurel F. Kinman
    Barrett M. Powell
    Ellen D. Zhong
    Bonnie Berger
    Joseph H. Davis
    Nature Protocols, 2023, 18 : 319 - 339
  • [7] Comparing cryo-EM structures
    Lawson, Catherine L.
    Chiu, Wah
    JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (03) : 523 - 526
  • [8] High-resolution real-space reconstruction of cryo-EM structures using a neural field network
    Huang, Yue
    Zhu, Chengguang
    Yang, Xiaokang
    Liu, Manhua
    NATURE MACHINE INTELLIGENCE, 2024, 6 (08) : 892 - 903
  • [9] CryoSTAR: leveraging structural priors and constraints for cryo-EM heterogeneous reconstruction
    Li, Yilai
    Zhou, Yi
    Yuan, Jing
    Ye, Fei
    Gu, Quanquan
    NATURE METHODS, 2024, 21 (12) : 2318 - 2326
  • [10] Fast multiscale reconstruction for Cryo-EM
    Donati, Laurene
    Nilchian, Masih
    Sorzano, Carlos Oscar S.
    Unser, Michael
    JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (03) : 543 - 554