Enumerating permutation polynomials over finite fields by degree

被引:14
作者
Konyagin, S
Pappalardi, F
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119899, Russia
[2] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1006/ffta.2002.0363
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an asymptotic formula for the number of permutations for which the associated permutation polynomial has degree smaller than q - 2. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:548 / 553
页数:6
相关论文
共 7 条
[1]  
[Anonymous], 1983, ENCY MATH APPL
[2]  
GROSSWALD E, 1977, AM MATH MON, V84, P63
[3]  
KONYAGIN S, 1995, E J APPROX, V1, P403
[4]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (03) :243-246
[5]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD .2. [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (01) :71-74
[6]  
MALVENUTO C, UNPUB ENUMERATING PE, V1
[7]  
MALVENUTO C, UNPUB ENUMERATING PE, V2