Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies

被引:735
作者
Greaney, Allison J. [1 ,2 ,3 ]
Loes, Andrea N. [1 ,4 ]
Crawford, Katharine H. D. [1 ,2 ,3 ]
Starr, Tyler N. [1 ,4 ]
Malone, Keara D. [1 ]
Chu, Helen Y. [5 ]
Bloom, Jesse D. [1 ,4 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Basic Sci Div & Computat Biol Program, Seattle, WA 98109 USA
[2] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[3] Univ Washington, Med Scientist Training Program, Seattle, WA 98195 USA
[4] Howard Hughes Med Inst, Seattle, WA 98109 USA
[5] Univ Washington, Div Allergy & Infect Dis, Seattle, WA 98195 USA
关键词
SPIKE;
D O I
10.1016/j.chom.2021.02.003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The evolution of SARS-CoV-2 could impair recognition of the virus by human antibody-mediated immunity. To facilitate prospective surveillance for such evolution, we map how convalescent plasma antibodies are impacted by all mutations to the spike's receptor-binding domain (RBD), the main target of plasma neutralizing activity. Binding by polyclonal plasma antibodies is affected by mutations in three main epitopes in the RBD, but longitudinal samples reveal that the impact of these mutations on antibody binding varies substantially both among individuals and within the same individual over time. Despite this inter- and intra-person heterogeneity, the mutations that most reduce antibody binding usually occur at just a few sites in the RBD's receptor-binding motif. The most important site is E484, where neutralization by some plasma is reduced >10-fold by several mutations, including one in the emerging 20H/501Y.V2 and 20J/501Y.V3 SARS-CoV-2 lineages. Going forward, these plasma escape maps can inform surveillance of SARS-CoV-2 evolution.
引用
收藏
页码:463 / +
页数:20
相关论文
共 69 条
  • [51] Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
    Starr, Tyler N.
    Greaney, Allison J.
    Hilton, Sarah K.
    Ellis, Daniel
    Crawford, Katharine H. D.
    Dingens, Adam S.
    Navarro, Mary Jane
    Bowen, John E.
    Tortorici, M. Alejandra
    Walls, Alexandra C.
    King, Neil P.
    Veesler, David
    Bloom, Jesse D.
    [J]. CELL, 2020, 182 (05) : 1295 - +
  • [52] Steffen T.L., 2020, The receptor binding domain of SARS-CoV-2 spike is the key target of neutralizing antibody in human polyclonal sera, DOI DOI 10.1101/2020.08.21.261727
  • [53] Stevens-Ayers, 2020, HUMAN CORONAVIRUS EV, DOI [10.1101/2020.12.17.423313, DOI 10.1101/2020.12.17.423313]
  • [54] Tegally HWE., 2020, EMERGENCE RAPID SPRE, DOI DOI 10.1101/2020.12.21.20248640
  • [55] Mycetoma caused by Microsporum canis in a patient with renal transplant: A case report and review of the literature
    Teo, Teddy S. P.
    Crawford, Lucy C.
    Pilch, Wiktor T.
    Carney, Bernard
    Solanki, Nicholas
    Kidd, Sarah E.
    Warner, Morgyn S.
    [J]. TRANSPLANT INFECTIOUS DISEASE, 2021, 23 (03)
  • [56] Thomson E.C., 2020, BIORXIV, DOI DOI 10.1101/2020.11.04.355842
  • [57] Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein
    Toelzer, Christine
    Gupta, Kapil
    Yadav, Sathish K. N.
    Borucu, Ufuk
    Davidson, Andrew D.
    Williamson, Maia Kavanagh
    Shoemark, Deborah K.
    Garzoni, Frederic
    Staufer, Oskar
    Milligan, Rachel
    Capin, Julien
    Mulholland, Adrian J.
    Spatz, Joachim
    Fitzgerald, Daniel
    Berger, Imre
    Schaffitzel, Christiane
    [J]. SCIENCE, 2020, 370 (6517) : 725 - +
  • [58] Voloch C.M., 2020, GENOMIC CHARACTERIZA, DOI [10.1101/2020.12.23.20248598, DOI 10.1101/2020.12.23.20248598]
  • [59] Voss William N, 2020, bioRxiv, DOI 10.1101/2020.12.20.423708
  • [60] Walls AC, 2020, CELL, V181, P281, DOI [10.1016/j.cell.2020.02.058, 10.1016/j.cell.2020.11.032]