Naturality and induced representations

被引:35
作者
Echterhoff, S
Kaliszewski, S
Quigg, J
Raeburn, I
机构
[1] Univ Munster, Fachbereich Math & Informat, D-48149 Munster, Germany
[2] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[3] Univ Newcastle, Dept Math, Newcastle, NSW 2308, Australia
关键词
D O I
10.1017/S0004972700022449
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that induction of covariant representations for C*-dynamical systems is natural in the sense that it gives a natural transformation between certain crossed-product functors. This involves setting up suitable categories of C*-algebras and dynamical systems, and extending the usual constructions of crossed products to define the appropriate functors. From this point of view, Green's Imprimitivity Theorem identifies the functors for which induction is a natural equivalence. Various special cases of these results have previously been obtained on an ad hoc basis.
引用
收藏
页码:415 / 438
页数:24
相关论文
共 17 条
[1]  
[Anonymous], 1995, LONDON MATH SOC LECT
[2]  
COMBES F, 1984, P LOND MATH SOC, V49, P289
[3]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[4]   CROSS PRODUCTS OF STRONGLY MORITA EQUIVALENT C-STAR-ALGEBRAS [J].
CURTO, RE ;
MUHLY, PS ;
WILLIAMS, DP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 90 (04) :528-530
[5]  
Echterhoff S, 1996, J REINE ANGEW MATH, V470, P181
[6]   Multipliers of imprimitivity bimodules and Morita equivalence of crossed products [J].
Echterhoff, S ;
Raeburn, I .
MATHEMATICA SCANDINAVICA, 1995, 76 (02) :289-309
[7]   MORITA EQUIVALENT TWISTED ACTIONS AND A NEW VERSION OF THE PACKER RAEBURN STABILIZATION TRICK [J].
ECHTERHOFF, S .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 :170-186
[8]   LOCAL STRUCTURE OF TWISTED COVARIANCE ALGEBRAS [J].
GREEN, P .
ACTA MATHEMATICA, 1978, 140 (3-4) :191-250
[9]   Duality of restriction and induction for C*-coactions [J].
Kaliszewski, S ;
Quigg, J ;
Raeburn, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (05) :2085-2113
[10]  
Kasparov G. G., 1995, London Mathematical Society Lecture Note Series, V1, P101