New support vector algorithms

被引:2089
作者
Schölkopf, B
Smola, AJ
Williamson, RC
Bartlett, PL
机构
[1] Australian Natl Univ, Dept Engn, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, RSISE, Canberra, ACT 0200, Australia
[3] GMD FIRST, D-12489 Berlin, Germany
关键词
D O I
10.1162/089976600300015565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter nu lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter epsilon in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of nu, and report experimental results.
引用
收藏
页码:1207 / 1245
页数:39
相关论文
共 39 条