New support vector algorithms

被引:2128
作者
Schölkopf, B
Smola, AJ
Williamson, RC
Bartlett, PL
机构
[1] Australian Natl Univ, Dept Engn, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, RSISE, Canberra, ACT 0200, Australia
[3] GMD FIRST, D-12489 Berlin, Germany
关键词
D O I
10.1162/089976600300015565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter nu lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter epsilon in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of nu, and report experimental results.
引用
收藏
页码:1207 / 1245
页数:39
相关论文
共 39 条
[1]  
AIZERMAN MA, 1965, AUTOMAT REM CONTR+, V25, P821
[2]  
[Anonymous], [No title captured], DOI DOI 10.1023/A:1009715923555
[3]  
[Anonymous], 1998, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, PERSPECTIVES IN NEURAL COMPUTING
[4]  
Anthony M., 1999, Neural network learning: theoretical foundations, Vfirst
[5]   The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network [J].
Bartlett, PL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) :525-536
[6]  
Bertsekas DP, 1997, J. Oper. Res. Soc., V48, P334, DOI 10.1057/palgrave.jors.2600425
[7]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[8]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[9]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[10]   An equivalence between sparse approximation and support vector machines [J].
Girosi, F .
NEURAL COMPUTATION, 1998, 10 (06) :1455-1480