Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration

被引:55
作者
Ribeiro, Sylvie [1 ,2 ]
Ribeiro, Clarisse [1 ,3 ]
Carvalho, Estela O. [1 ,3 ]
Tubio, Carmen R. [4 ]
Castro, Nelson [4 ]
Pereira, Nelson [1 ,5 ]
Correia, Vitor [1 ,5 ]
Gomes, Andreia C. [2 ]
Lanceros-Mendez, Senentxu [1 ,4 ,6 ]
机构
[1] Univ Minho, Ctr Dept Fis, P-4710057 Braga, Portugal
[2] Univ Minho, Ctr Mol & Environm Biol CBMA, P-4710057 Braga, Portugal
[3] Univ Minho, CEB Ctr Biol Engn, P-4710057 Braga, Portugal
[4] Basque Ctr Mat Applicat & Nanostruct, BCMat, Leioa 48940, Spain
[5] Univ Minho, Ctr Algoritmi, Leioa 48940, Spain
[6] Basque Fdn Sci, IKERBASQUE, Bilbao 48013, Spain
关键词
magnetoelectric biomaterials; muscle tissue engineering; mechanoelectrical stimuli; myotubes; bioreactors; POLY(VINYLIDENE FLUORIDE); OSTEOGENIC DIFFERENTIATION; SURFACE WETTABILITY; STIMULATION; CELLS; ROUGHNESS; MEMBRANES; ADHESION; PHASES; FILMS;
D O I
10.1021/acsabm.0c00315
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work reports on magnetoelectric biomaterials suitable for effective proliferation and differentiation of myoblast in a biomimetic microenvironment providing the electromechanical stimuli associated with this tissue in the human body. Magnetoelectric films are obtained by solvent casting through the combination of a piezoelectric polymer, poly(vinylidene fluoride-trifluoro-ethylene), and magnetostrictive particles (CoFe2O4). The nonpoled and poled (with negative and positive surface charge) magnetoelectric composites are used to investigate their influence on C2C12 myoblast adhesion, proliferation, and differentiation. It is demonstrated that the proliferation and differentiation of the cells are enhanced by the application of mechanical and/or electrical stimulation, with higher values of maturation index under mechanoelectrical stimuli. These results show that magnetoelectric cell stimulation is a full potential approach for skeletal muscle tissue engineering applications.
引用
收藏
页码:4239 / 4252
页数:14
相关论文
共 43 条
[1]  
[Anonymous], 2013, Surface science techniques, DOI [10.1007/978-3-642-34243-1, 10.1007/978-3-642-34243-1_1, DOI 10.1007/978-3-642-34243-1_1]
[2]   Vinculin in cell-cell and cell-matrix adhesions [J].
Bays, Jennifer L. ;
DeMali, Kris A. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2017, 74 (16) :2999-3009
[3]   Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications [J].
Cardoso, Vanessa F. ;
Correia, Daniela M. ;
Ribeiro, Clarisse ;
Fernandes, Margarida M. ;
Lanceros-Mendez, Senentxu .
POLYMERS, 2018, 10 (02)
[4]   Making muscle: skeletal myogenesis in vivo and in vitro [J].
Chal, Jerome ;
Pourquie, Olivier .
DEVELOPMENT, 2017, 144 (12) :2104-2122
[5]   The Role of Biomaterials in Implantation for Central Nervous System Injury [J].
Chen, Yu-Shuan ;
Harn, Horng-Jyh ;
Chiou, Tzyy-Wen .
CELL TRANSPLANTATION, 2018, 27 (03) :407-422
[6]   Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment [J].
Correia, Daniela M. ;
Nunes-Pereira, Joao ;
Alikin, Denis ;
Kholkin, Andrei L. ;
Carabineiro, Sonia A. C. ;
Rebouta, Luis ;
Rodrigues, Marco S. ;
Vaz, Filipe ;
Costa, Carlos M. ;
Lanceros-Mendez, Senentxu .
POLYMER, 2019, 169 :138-147
[7]   Remote control of cellular behaviour with magnetic nanoparticles [J].
Dobson, Jon .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :139-143
[8]   Conductive biomaterials for muscle tissue engineering [J].
Dong, Ruonan ;
Ma, Peter X. ;
Guo, Baolin .
BIOMATERIALS, 2020, 229 (229)
[9]   Skeletal Muscle: A Brief Review of Structure and Function [J].
Frontera, Walter R. ;
Ochala, Julien .
CALCIFIED TISSUE INTERNATIONAL, 2015, 96 (03) :183-195
[10]   Averaged EMG profiles in jogging and running at different speeds [J].
Gazendam, Marnix G. J. ;
Hof, At L. .
GAIT & POSTURE, 2007, 25 (04) :604-614