Self-Powered Room-Temperature Ethanol Sensor Based on Brush-Shaped Triboelectric Nanogenerator

被引:33
|
作者
Tian, Jingwen [1 ,2 ]
Wang, Fan [1 ,2 ]
Ding, Yafei [1 ,2 ]
Lei, Rui [1 ,2 ]
Shi, Yuxiang [1 ,2 ]
Tao, Xinglin [1 ,2 ]
Li, Shuyao [1 ,2 ]
Yang, Ya [1 ,2 ]
Chen, Xiangyu [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
GAS SENSOR; THIN-FILMS; ENERGY; WO3; FABRICATION;
D O I
10.34133/2021/8564780
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Highly sensitive ethanol sensors have been widely utilized in environmental protection, industrial monitoring, and drink-driving tests. In this work, a fully self-powered ethanol detector operating at room temperature has been developed based on a triboelectric nanogenerator (TENG). The gas-sensitive oxide semiconductor is selected as the sensory component for the ethanol detection, while the resistance change of the oxide semiconductor can well match the "linear" region of the load characteristic curve of TENG. Hence, the output signal of TENG can directly reveal the concentration change of ethanol gas. An accelerator gearbox is applied to support the operation of the TENG, and the concentration change of ethanol gas can be visualized on the Liquid Crystal Display. This fully self-powered ethanol detector has excellent durability, low fabrication cost, and high selectivity of 5 ppm. Therefore, the ethanol detector based on TENG not only provides a different approach for the gas detection but also further demonstrates the application potential of TENG for various sensory devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Self-powered room-temperature ethanol sensor based on brush-shaped triboelectric nanogenerator
    Tian, Jingwen
    Wang, Fan
    Ding, Yafei
    Lei, Rui
    Shi, Yuxiang
    Tao, Xinglin
    Li, Shuyao
    Yang, Ya
    Chen, Xiangyu
    Research, 2021, 2021
  • [2] Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature
    Wang, Si
    Xie, Guangzhong
    Tai, Huiling
    Su, Yuanjie
    Yang, Boxi
    Zhang, Qiuping
    Du, Xiaosong
    Jiang, Yadong
    NANO ENERGY, 2018, 51 : 231 - 240
  • [3] A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
    Kequan Xia
    Zhiyuan Zhu
    Hongze Zhang
    Zhiwei Xu
    Applied Physics A, 2018, 124
  • [4] A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
    Xia, Kequan
    Zhu, Zhiyuan
    Zhang, Hongze
    Xu, Zhiwei
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (08):
  • [5] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [6] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328
  • [7] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [8] Triboelectric nanogenerator as self-powered impact sensor
    Garcia, Cristobal
    Trendafilova, Irina
    Guzman de Villoria, Roberto
    Sanchez del Rio, Jose
    INTERNATIONAL CONFERENCE ON ENGINEERING VIBRATION (ICOEV 2017), 2018, 148
  • [9] Perspectives on self-powered respiration sensor based on triboelectric nanogenerator
    Chen, Yanmeng
    Li, Weixiong
    Chen, Chunxu
    Tai, Huiling
    Xie, Guangzhong
    Jiang, Yadong
    Su, Yuanjie
    APPLIED PHYSICS LETTERS, 2021, 119 (23)
  • [10] Self-Powered Landslide Displacement Sensor Based on Triboelectric Nanogenerator
    Zhang, Yongquan
    Chuan, Wu
    IEEE SENSORS JOURNAL, 2023, 23 (16) : 18042 - 18049