GENERALIZED CONTINUED FRACTION EXPANSIONS WITH CONSTANT PARTIAL DENOMINATORS

被引:0
作者
Torma, Topi [1 ]
机构
[1] Univ Oulu, Res Unit Math Sci, POB 8000, Oulu 90014, Finland
关键词
generalized continued fractions;
D O I
10.1017/S1446788718000332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study generalized continued fraction expansions of the form a(1)/N + a(2)/N + a(3)/N +..., where N is a fixed positive integer and the partial numerators alpha(i) are positive integers for all i. We call these expansions dn(N) expansions and show that every positive real number has infinitely many dn(N) expansions for each N. In particular, we study the dn(N) expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each N, a dn(N) expansion with bounded partial numerators.
引用
收藏
页码:272 / 288
页数:17
相关论文
共 8 条
[1]  
[Anonymous], 1992, Studies in Computational Mathematics
[2]   A generalization of continued fractions [J].
Anselm, Maxwell ;
Weintraub, Steven H. .
JOURNAL OF NUMBER THEORY, 2011, 131 (12) :2442-2460
[3]  
Berndt B., 1985, Ramanujans Notebooks, Part V
[4]  
Berndt B.C., 1989, Ramanujan's Notebooks
[5]  
Borwein J, 2014, AUST MATH SOC LECT, V23
[6]   On the Ramanujan AGM fraction, I: The real-parameter case [J].
Borwein, J ;
Crandall, R ;
Fee, G .
EXPERIMENTAL MATHEMATICS, 2004, 13 (03) :275-285
[8]  
Rosen K H., 1992, Elementary Number Theory and its Application, V3