Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction

被引:46
作者
Dai, Weiji [1 ]
Bai, Xiaowan [2 ]
Zhu, Yin-an [1 ]
Zhang, Yue [1 ]
Lu, Tao [1 ]
Pan, Ye [1 ]
Wang, Jinlan [2 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Metall Mat, Nanjing 211189, Peoples R China
[2] Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
EFFICIENT ELECTROCATALYSTS; MOLECULAR-DYNAMICS; HETEROSTRUCTURES; NANOSHEETS; INTERFACE; OXIDATION; CATALYSTS; ELECTRODE; ALKALINE; FILMS;
D O I
10.1039/d0ta10925h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface reconstruction of non-oxide electrocatalysts for the oxygen evolution reaction (OER) to form "true" active species has been reported; however, the mechanism of the in situ surface activation has remained unclear. In this work, nanocrystalline Ni5P4 is prepared as a pre-catalyst for the OER to gain insight into the in situ surface activation. We find that NiO nanosheets with abundant crystal defects are formed on the surfaces of Ni5P4 particles during the electrochemical process. The effects of the in situ P incorporation in surface reconstruction derived NiO for OER electrocatalysis are discussed. Theoretical calculations reveal that the heteroatom P substitution for O atoms of NiO crystals on the subsurface can weaken the binding strength of the OER intermediates, change the potential-determining step of the OER and achieve a lower theoretical overpotential. The present work provides a novel mechanism of the enhanced electrocatalytic performances of non-oxide materials for OER electrocatalysis by highlighting the effects of surface reconstruction induced in situ heteroatom doping in derived active materials.
引用
收藏
页码:6432 / 6441
页数:10
相关论文
共 53 条
[1]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[2]   Novel porous metal phosphonates as efficient electrocatalysts for the oxygen evolution reaction [J].
Bhanja, Piyali ;
Kim, Yena ;
Kani, Kenya ;
Paul, Bappi ;
Debnath, Tanay ;
Lin, Jianjian ;
Bhaumik, Asim ;
Yamauchi, Yusuke .
CHEMICAL ENGINEERING JOURNAL, 2020, 396
[3]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[4]   In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts [J].
Chen, Wei ;
Liu, Yayuan ;
Li, Yuzhang ;
Sun, Jie ;
Qiu, Yongcai ;
Liu, Chong ;
Zhou, Guangmin ;
Cui, Yi .
NANO LETTERS, 2016, 16 (12) :7588-7596
[5]   In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation [J].
Chen, Wei ;
Wang, Haotian ;
Li, Yuzhang ;
Liu, Yayuan ;
Sun, Jie ;
Lee, Sanghan ;
Lee, Jang-Soo ;
Cui, Yi .
ACS CENTRAL SCIENCE, 2015, 1 (05) :244-251
[6]   Heteroatom Ni alloyed pyrite-phase FeS2 as a pre-catalyst for enhanced oxygen evolution reaction [J].
Dai, Weiji ;
Pan, Ye ;
Ren, Kai ;
Zhu, Yin-an ;
Lu, Tao .
ELECTROCHIMICA ACTA, 2020, 355 (355)
[7]   Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction [J].
Dong, Bin ;
Zhao, Xin ;
Han, Guan-Qun ;
Li, Xiao ;
Shang, Xiao ;
Liu, Yan-Ru ;
Hu, Wen-Hui ;
Chai, Yong-Ming ;
Zhao, Hui ;
Liu, Chen-Guang .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) :13499-13508
[8]   Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting [J].
Du, Cuicui ;
Shang, Mengxiang ;
Mao, Jianxin ;
Song, Wenbo .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (30) :15940-15949
[9]   PLD-fabricated perovskite oxide nanofilm as efficient electrocatalyst with highly enhanced water oxidation performance [J].
Du, Xinyu ;
Ai, Haoqiang ;
Chen, Mingpeng ;
Liu, Dong ;
Chen, Shi ;
Wang, Xuesen ;
Lo, Kin Ho ;
Pan, Hui .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 272 (272)
[10]   Surface-Oxidized Dicobalt Phosphide Nanoneedles as a Nonprecious, Durable, and Efficient OER Catalyst [J].
Dutta, Anirban ;
Samantara, Aneeya K. ;
Dutta, Sumit K. ;
Jena, Bikash Kumar ;
Pradhan, Narayan .
ACS ENERGY LETTERS, 2016, 1 (01) :169-174