Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease

被引:106
作者
Adegbuyiro, Adewale [1 ]
Sedighi, Faezeh [1 ]
Pilkington, Albert W. [1 ]
Groover, Sharon [1 ]
Legleiter, Justin [1 ,2 ,3 ]
机构
[1] West Virginia Univ, C Eugene Bennett Dept Chem, 217 Clark Hall, Morgantown, WV 26506 USA
[2] West Virginia Univ, Robert C Byrd Hlth Sci Ctr, Blanchette Rockefeller Neurosci Inst, POB 9304, Morgantown, WV 26506 USA
[3] West Virginia Univ, NanoSAFE, POB 6223, Morgantown, WV 26506 USA
基金
美国国家卫生研究院;
关键词
NEURONAL INTRANUCLEAR INCLUSIONS; MUTANT HUNTINGTIN OLIGOMERS; PRION-LIKE TRANSMISSION; 1-17 MEMBRANE ANCHOR; STRIATAL CELL-DEATH; ANDROGEN RECEPTOR; MOUSE MODELS; CAG-REPEAT; FLANKING SEQUENCES; IN-VITRO;
D O I
10.1021/acs.biochem.6b00936
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
引用
收藏
页码:1199 / 1217
页数:19
相关论文
共 309 条
[1]   Phosphorylation of Threonine 3 IMPLICATIONS FOR HUNTINGTIN AGGREGATION AND NEUROTOXICITY [J].
Aiken, Charity T. ;
Steffan, Joan S. ;
Guerrero, Cortnie M. ;
Khashwji, Hasan ;
Lukacsovich, Tamas ;
Simmons, Danielle ;
Purcell, Judy M. ;
Menhaji, Kimia ;
Zhu, Ya-Zhen ;
Green, Kim ;
LaFerla, Frank ;
Huang, Lan ;
Thompson, Leslie Michels ;
Marsh, J. Lawrence .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (43) :29427-29436
[2]  
Altschuler EL, 1997, J PEPT RES, V50, P73
[3]   CA150 expression delays striatal cell death in overexpression and knock-in conditions for mutant huntingtin neurotoxicity [J].
Arango, M ;
Holbert, S ;
Zala, D ;
Brouillet, E ;
Pearson, J ;
Regulier, E ;
Thakur, AK ;
Aebischer, P ;
Wetzel, R ;
Deglon, N ;
Christian, N .
JOURNAL OF NEUROSCIENCE, 2006, 26 (17) :4649-4659
[4]   Huntingtin N-Terminal Monomeric and Multimeric Structures Destabilized by Covalent Modification of Heteroatomic Residues [J].
Arndt, James R. ;
Kondalaji, Samaneh Ghassabi ;
Maurer, Megan M. ;
Parker, Arlo ;
Legleiter, Justin ;
Valentine, Stephen J. .
BIOCHEMISTRY, 2015, 54 (28) :4285-4296
[5]  
Arndt James R., 2015, BioMolecular Concepts, V6, P33, DOI 10.1515/bmc-2015-0001
[6]   Lysine residues in the N-terminal huntingtin amphipathic α-helix play a key role in peptide aggregation [J].
Arndt, James R. ;
Brown, Robert J. ;
Burke, Kathleen A. ;
Legleiter, Justin ;
Valentine, Stephen J. .
JOURNAL OF MASS SPECTROMETRY, 2015, 50 (01) :117-126
[7]   Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death [J].
Arrasate, M ;
Mitra, S ;
Schweitzer, ES ;
Segal, MR ;
Finkbeiner, S .
NATURE, 2004, 431 (7010) :805-810
[8]   Protein aggregates in Huntington's disease [J].
Arrasate, Montserrat ;
Finkbeiner, Steven .
EXPERIMENTAL NEUROLOGY, 2012, 238 (01) :1-11
[9]   Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity [J].
Atwal, Randy Singh ;
Xia, Jianrun ;
Pinchev, Deborah ;
Taylor, Jillian ;
Epand, Richard M. ;
Truant, Ray .
HUMAN MOLECULAR GENETICS, 2007, 16 (21) :2600-2615
[10]   The centrosome in human genetic disease [J].
Badano, JL ;
Teslovich, TM ;
Katsanis, N .
NATURE REVIEWS GENETICS, 2005, 6 (03) :194-205