Utilizing Artificial Intelligence for Head and Neck Cancer Outcomes Prediction From Imaging

被引:22
作者
Chinnery, Tricia [1 ]
Arifin, Andrew [2 ]
Tay, Keng Yeow [3 ]
Leung, Andrew [3 ]
Nichols, Anthony C. [4 ]
Palma, David A. [2 ]
Mattonen, Sarah A. [1 ,2 ]
Lang, Pencilla [2 ]
机构
[1] Western Univ, Dept Med Biophys, London, ON, Canada
[2] Western Univ, Dept Oncol, London, ON, Canada
[3] Western Univ, Dept Med Imaging, London, ON, Canada
[4] Western Univ, Dept Otolaryngol Head & Neck Surg, London, ON, Canada
来源
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES | 2021年 / 72卷 / 01期
关键词
head and neck cancer; artificial intelligence; machine learning; radiomics; predictive modeling; MACHINE LEARNING-METHODS; LOCALLY ADVANCED HEAD; EXTRANODAL EXTENSION; PROGNOSTIC VALUE; OROPHARYNGEAL CANCER; RADIATION-THERAPY; DE-ESCALATION; RADIOMICS; RADIOTHERAPY; TOXICITIES;
D O I
10.1177/0846537120942134
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI)-based models have become a growing area of interest in predictive medicine and have the potential to aid physician decision-making to improve patient outcomes. Imaging and radiomics play an increasingly important role in these models. This review summarizes recent developments in the field of radiomics for AI in head and neck cancer. Prediction models for oncologic outcomes, treatment toxicity, and pathological findings have all been created. Exploratory studies are promising; however, validation studies that demonstrate consistency, reproducibility, and prognostic impact remain uncommon. Prospective clinical trials with standardized procedures are required for clinical translation.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 70 条
  • [31] Development and validation of radiomic signatures of head and neck squamous cell carcinoma molecular features and subtypes
    Huang, Chao
    Cintra, Murilo
    Brennan, Kevin
    Zhou, Mu
    Colevas, A. Dimitrios
    Fischbein, Nancy
    Zhu, Shankuan
    Gevaert, Olivier
    [J]. EBIOMEDICINE, 2019, 45 : 70 - 80
  • [32] Refining American Joint Committee on Cancer/Union for International Cancer Control TNM Stage and Prognostic Groups for Human Papillomavirus-Related Oropharyngeal Carcinomas
    Huang, Shao Hui
    Xu, Wei
    Waldron, John
    Siu, Lillian
    Shen, Xiaowei
    Tong, Li
    Ringash, Jolie
    Bayley, Andrew
    Kim, John
    Hope, Andrew
    Cho, John
    Giuliani, Meredith
    Hansen, Aaron
    Irish, Jonathan
    Gilbert, Ralph
    Gullane, Patrick
    Perez-Ordonez, Bayardo
    Weinreb, Ilan
    Liu, Fei-Fei
    O'Sullivan, Brian
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (08) : 836 - +
  • [33] Exploring Applications of Radiomics in Magnetic Resonance Imaging of Head and Neck Cancer: A Systematic Review
    Jethanandani, Amit
    Lin, Timothy A.
    Volpe, Stefanie
    Elhalawani, Hesham
    Mohamed, Abdallah S. R.
    Yang, Pei
    Fuller, Clifton D.
    [J]. FRONTIERS IN ONCOLOGY, 2018, 8
  • [34] Machine Learning Methods Uncover Radiomorphologic Dose Patterns in Salivary Glands that Predict Xerostomia in Patients with Head and Neck Cancer
    Jiang, Wei
    Lakshminarayanan, Pranav
    Hui, Xuan
    Han, Peijin
    Cheng, Zhi
    Bowers, Michael
    Shpitser, Ilya
    Siddiqui, Sauleh
    Taylor, Russell H.
    Quon, Harry
    McNutt, Todd
    [J]. ADVANCES IN RADIATION ONCOLOGY, 2019, 4 (02) : 401 - 412
  • [35] Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma
    Kann, Benjamin H.
    Hicks, Daniel F.
    Payabvash, Sam
    Mahajan, Amit
    Du, Justin
    Gupta, Vishal
    Park, Henry S.
    Yu, James B.
    Yarbrough, Wendell G.
    Burtness, Barbara A.
    Husain, Zain A.
    Aneja, Sanjay
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (12) : 1304 - +
  • [36] Pretreatment Identification of Head and Neck Cancer Nodal Metastasis and Extranodal Extension Using Deep Learning Neural Networks
    Kann, Benjamin H.
    Aneja, Sanjay
    Loganadane, Gokoulakrichenane V.
    Kelly, Jacqueline R.
    Smith, Stephen M.
    Decker, Roy H.
    Yu, James B.
    Park, Henry S.
    Yarbrough, Wendell G.
    Malhotra, Ajay
    Burtness, Barbara A.
    Husain, Zain A.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [37] Development and Assessment of a Machine Learning Model to Help Predict Survival Among Patients With Oral Squamous Cell Carcinoma
    Karadaghy, Omar A.
    Shew, Matthew
    New, Jacob
    Bur, Andres M.
    [J]. JAMA OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2019, 145 (12) : 1115 - 1120
  • [38] Radiomics with artificial intelligence: a practical guide for beginners
    Kocak, Burak
    Durmaz, Emine Sebnem
    Ates, Ece
    Kilickesmez, Ozgur
    [J]. DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2019, 25 (06): : 485 - 495
  • [39] Prognostic Value of Radiologic Extranodal Extension in Human Papillomavirus-Related Oropharyngeal Squamous Cell Carcinoma
    Lee, Boeun
    Choi, Young Jun
    Kim, Seon-Ok
    Lee, Yoon Se
    Hong, Jung Yong
    Baek, Jung Hwan
    Lee, Jeong Hyun
    [J]. KOREAN JOURNAL OF RADIOLOGY, 2019, 20 (08) : 1266 - 1274
  • [40] The molecular biology of head and neck cancer
    Leemans, C. Rene
    Braakhuis, Boudewijn J. M.
    Brakenhoff, Ruud H.
    [J]. NATURE REVIEWS CANCER, 2011, 11 (01) : 9 - 22