Utilizing Artificial Intelligence for Head and Neck Cancer Outcomes Prediction From Imaging

被引:22
作者
Chinnery, Tricia [1 ]
Arifin, Andrew [2 ]
Tay, Keng Yeow [3 ]
Leung, Andrew [3 ]
Nichols, Anthony C. [4 ]
Palma, David A. [2 ]
Mattonen, Sarah A. [1 ,2 ]
Lang, Pencilla [2 ]
机构
[1] Western Univ, Dept Med Biophys, London, ON, Canada
[2] Western Univ, Dept Oncol, London, ON, Canada
[3] Western Univ, Dept Med Imaging, London, ON, Canada
[4] Western Univ, Dept Otolaryngol Head & Neck Surg, London, ON, Canada
来源
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES | 2021年 / 72卷 / 01期
关键词
head and neck cancer; artificial intelligence; machine learning; radiomics; predictive modeling; MACHINE LEARNING-METHODS; LOCALLY ADVANCED HEAD; EXTRANODAL EXTENSION; PROGNOSTIC VALUE; OROPHARYNGEAL CANCER; RADIATION-THERAPY; DE-ESCALATION; RADIOMICS; RADIOTHERAPY; TOXICITIES;
D O I
10.1177/0846537120942134
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI)-based models have become a growing area of interest in predictive medicine and have the potential to aid physician decision-making to improve patient outcomes. Imaging and radiomics play an increasingly important role in these models. This review summarizes recent developments in the field of radiomics for AI in head and neck cancer. Prediction models for oncologic outcomes, treatment toxicity, and pathological findings have all been created. Exploratory studies are promising; however, validation studies that demonstrate consistency, reproducibility, and prognostic impact remain uncommon. Prospective clinical trials with standardized procedures are required for clinical translation.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 70 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool
    Alabi, Rasheed Omobolaji
    Elmusrati, Mohammed
    Sawazaki-Calone, Iris
    Kowalski, Luiz Paulo
    Haglund, Caj
    Coletta, Ricardo D.
    Makitie, Antti A.
    Salo, Tuula
    Leivo, Ilmo
    Almangush, Alhadi
    [J]. VIRCHOWS ARCHIV, 2019, 475 (04) : 489 - 497
  • [3] Radiologic-Pathologic Correlation of Extranodal Extension in Patients With Squamous Cell Carcinoma of the Oral Cavity: Implications for Future Editions of the TNM Classification
    Almulla, Abdullah
    Noel, Christopher W.
    Lu, Lin
    Xu, Wei
    O'Sullivan, Brian
    Goldstein, David P.
    Hope, Andrew
    Perez-Ordonez, Bayardo
    Weinreb, Ilan
    Irish, Jonathan
    Gullane, Patrick
    Chepeha, Douglas
    Tong, Li
    Yu, Eugene
    Huang, Shao Hui
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04): : 698 - 708
  • [4] The Prognostic Value of Extranodal Extension in Human Papillomavirus-Associated Oropharyngeal Squamous Cell Carcinoma
    An, Yi
    Park, Henry S.
    Kelly, Jacqueline R.
    Stahl, John M.
    Yarbrough, Wendell G.
    Burtness, Barbara A.
    Contessa, Joseph N.
    Decker, Roy H.
    Koshy, Matthew
    Husain, Zain A.
    [J]. CANCER, 2017, 123 (14) : 2762 - 2772
  • [5] [Anonymous], 2018, GENTLE INTRO K FOLD
  • [6] [Anonymous], 2012, ADAPTIVE RAD TREATME
  • [7] [Anonymous], 2018, LOW DOSE WEEKLY VS H
  • [8] [Anonymous], 2019, DE ESCALATION RADIOT
  • [9] [Anonymous], 2018, CONCOMITANT IMMUNE C
  • [10] [Anonymous], 2019, Canadian cancer statistics