Mechanochemical bond scission for the activation of drugs

被引:230
作者
Huo, Shuaidong [1 ,2 ,3 ,4 ]
Zhao, Pengkun [2 ,4 ]
Shi, Zhiyuan [2 ,3 ]
Zou, Miancheng [2 ,4 ]
Yang, Xintong [2 ,4 ]
Warszawik, Eliza [4 ]
Loznik, Mark [2 ,3 ]
Goestl, Robert [2 ]
Herrmann, Andreas [2 ,3 ,4 ]
机构
[1] Xiamen Univ, Sch Pharmaceut Sci, Fujian Prov Key Lab Innovat Drug Target Res, Xiamen, Peoples R China
[2] DWI Leibniz Inst Interact Mat, Aachen, Germany
[3] Rhein Westfal TH Aachen, Inst Tech & Macromol Chem, Aachen, Germany
[4] Univ Groningen, Zernike Inst Adv Mat, Groningen, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
POLYMER MECHANOCHEMISTRY; GOLD NANOPARTICLES; ULTRASOUND; DELIVERY; THERAPY; RELEASE;
D O I
10.1038/s41557-020-00624-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pharmaceutical drug therapy is often hindered by issues caused by poor drug selectivity, including unwanted side effects and drug resistance. Spatial and temporal control over drug activation in response to stimuli is a promising strategy to attenuate and circumvent these problems. Here we use ultrasound to activate drugs from inactive macromolecules or nano-assemblies through the controlled scission of mechanochemically labile covalent bonds and weak non-covalent bonds. We show that a polymer with a disulfide motif at the centre of the main chain releases an alkaloid-based anticancer drug from its beta-carbonate linker by a force-induced intramolecular 5-exo-trig cyclization. Second, aminoglycoside antibiotics complexed by a multi-aptamer RNA structure are activated by the mechanochemical opening and scission of the nucleic acid backbone. Lastly, nanoparticle-polymer and nanoparticle-nanoparticle assemblies held together by hydrogen bonds between the peptide antibiotic vancomycin and its complementary peptide target are activated by force-induced scission of hydrogen bonds. This work demonstrates the potential of ultrasound to activate mechanoresponsive prodrug systems.
引用
收藏
页码:131 / 139
页数:13
相关论文
共 51 条
[1]   The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes [J].
Ahmed, Salma E. ;
Martins, Ana M. ;
Husseini, Ghaleb A. .
JOURNAL OF DRUG TARGETING, 2015, 23 (01) :16-42
[2]  
Akbulatov S, 2017, CHEMPHYSCHEM, V18, P1422, DOI 10.1002/cphc.201601354
[3]   Methods for in vitro evaluating antimicrobial activity: A review [J].
Balouiri, Mounyr ;
Sadiki, Moulay ;
Koraichi Ibnsouda, Saad .
JOURNAL OF PHARMACEUTICAL ANALYSIS, 2016, 6 (02) :71-79
[4]  
Bastian AA, 2012, NAT CHEM, V4, P789, DOI [10.1038/NCHEM.1402, 10.1038/nchem.1402]
[5]  
Brosh David, 1998, Int J Cardiovasc Intervent, V1, P11
[6]   Molecular engineering of mechanophore activity for stress-responsive polymeric materials [J].
Brown, Cameron L. ;
Craig, Stephen L. .
CHEMICAL SCIENCE, 2015, 6 (04) :2158-2165
[7]   On the mechanochemical activation by ultrasound [J].
Cravotto, Giancarlo ;
Gaudino, Emanuela Calcio ;
Cintas, Pedro .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (18) :7521-7534
[8]   pH-Responsive Polymer Nanoparticles for Drug Delivery [J].
Deirram, Nayeleh ;
Zhang, Changhe ;
Kermaniyan, Sarah S. ;
Johnston, Angus P. R. ;
Such, Georgina K. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (10)
[9]   Proton-Coupled Mechanochemical Transduction: A Mechanogenerated Add [J].
Diesendruck, Charles E. ;
Steinberg, Brian D. ;
Sugai, Naoto ;
Silberstein, Meredith N. ;
Sottos, Nancy R. ;
White, Scott R. ;
Braun, Paul V. ;
Moore, Jeffrey S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (30) :12446-12449
[10]  
Dopieralski P, 2013, NAT CHEM, V5, P685, DOI [10.1038/NCHEM.1676, 10.1038/nchem.1676]