Geometric realisations of cubical sets with connections, and classifying spaces of categories

被引:8
作者
Antolini, R [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
category; classifying space; connections; cubical set; homotopy; realisation;
D O I
10.1023/A:1020506404904
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the category of cubical sets with some additional degeneracies called connections. We prove that the realisation of a cubical set with connections is independent, up to homotopy, of whether we collapse those extra degeneracies or not and that any cubical set which is Kan admits connections. Using this type of cubical sets we define the cubical classifying space of a category and prove that this is equivalent to the simplicial one.
引用
收藏
页码:481 / 494
页数:14
相关论文
共 13 条
[1]   The singular cubical set of a topological space [J].
Antolini, R ;
Wiest, B .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 :149-154
[2]  
ANTOLINI R, 2000, ANN MAT PUR APPL, V178, P317
[3]  
BROWN R, 1977, CR ACAD SCI A MATH, V285, P997
[4]   COLIMIT THEOREMS FOR RELATIVE HOMOTOPY-GROUPS [J].
BROWN, R ;
HIGGINS, PJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1981, 22 (01) :11-41
[5]  
EILENBERG S, 1953, AM J MATH, V79, P189
[6]   Trunks and classifying spaces [J].
Fenn, R ;
Rourke, C ;
Sanderson, B .
APPLIED CATEGORICAL STRUCTURES, 1995, 3 (04) :321-356
[7]   Categorically algebraic foundations for homotopical algebra [J].
Grandis, M .
APPLIED CATEGORICAL STRUCTURES, 1997, 5 (04) :363-413
[9]   DELTA-SETS .1. HOMOTOPY THEORY [J].
ROURKE, CP ;
SANDERSO.BJ .
QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (87) :321-&
[10]  
Spencer C. B., 1977, CAHIERS TOPOLOGIE GE, V18, P409