q-Gaussian processes: Non-commutative and classical aspects

被引:254
作者
Bozejko, M
Kummerer, B
Speicher, R
机构
[1] UNIV STUTTGART,INST MATH A,D-70569 STUTTGART,GERMANY
[2] UNIV HEIDELBERG,INST ANGEW MATH,D-69120 HEIDELBERG,GERMANY
关键词
D O I
10.1007/s002200050084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine, for -1 < q < 1, q-Gaussian processes, i.e. families of operators (non-commutative random variables) X-t = a(t) + a(t)* - where the a(t) fulfill the q-commutation relations a(s)a(t)* - qa(t)*a(s) = c(s, t) . 1 for some covariance function c(.,.) - equipped with the vacuum expectation state. We show that there is a q-analogue of the Gaussian functor of second quantization behind these processes and that this structure can be used to translate questions on q-Gaussian processes into corresponding (and much simpler) questions in the underlying Hilbert space. In particular, we use this idea to show that a large class of q-Gaussian processes possesses a non-commutative kind of Markov property, which ensures that there exist classical versions of these non-commutative processes. This answers an old question of Frisch and Bourret [FB].
引用
收藏
页码:129 / 154
页数:26
相关论文
共 58 条
[1]  
Accardi L., 1982, Publ. Rest. Inst. Math. Sct., V18, P97
[2]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[3]  
[Anonymous], 1993, QUANTUM PROBABILITY, DOI DOI 10.1007/978-3-662-21558-6
[4]  
BHAT BVR, 1995, ANN I H POINCARE-PR, V31, P601
[5]  
Biane P., 1997, Free Probability Theory, V12, P1
[6]  
BIANE P, 1995, QUANTUM MARKOV PROCE
[7]  
BIANE P, IN PRESS MFATH Z
[8]  
Bozejko M, 1996, MATH Z, V222, P135
[9]   AN EXAMPLE OF A GENERALIZED BROWNIAN-MOTION [J].
BOZEJKO, M ;
SPEICHER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (03) :519-531
[10]   COMPLETELY POSITIVE MAPS ON COXETER GROUPS, DEFORMED COMMUTATION RELATIONS, AND OPERATOR-SPACES [J].
BOZEJKO, M ;
SPEICHER, R .
MATHEMATISCHE ANNALEN, 1994, 300 (01) :97-120