Recent advances in lithium-based batteries using metal organic frameworks as electrode materials

被引:84
作者
Jiang, Yongchao [1 ,2 ]
Zhao, Haitao [1 ]
Yue, Luchao [1 ]
Liang, Jie [1 ]
Li, Tingshuai [1 ]
Liu, Qian [1 ]
Luo, Yonglan [1 ]
Kong, Xiangzhe [2 ]
Lu, Siyu [3 ,4 ]
Shi, Xifeng [5 ]
Zhou, Kun [2 ]
Sun, Xuping [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[2] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[3] Zhengzhou Univ, Green Catalysis Ctr, Zhengzhou 450001, Henan, Peoples R China
[4] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Henan, Peoples R China
[5] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
MOFs; MOF composites; MOF-derived materials; Li-ion batteries; Li-S batteries; Li-O-2; batteries; HIGH-PERFORMANCE ANODE; LI-ION BATTERIES; POROUS CARBON; ELECTROCHEMICAL PERFORMANCE; SULFUR-BATTERIES; CATHODE MATERIAL; EXCELLENT PERFORMANCE; OXIDE COMPOSITES; OXYGEN REDUCTION; FACILE SYNTHESIS;
D O I
10.1016/j.elecom.2020.106881
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Metal organic frameworks (MOFs) show excellent electrochemical performances due to their ultrahigh porosity, large specific surface area, and easy functionalization. These characteristics make it fascinating electrode materials with excellent electrochemical performance for the currently dominated lithium-based batteries (e.g., Li-ion batteries, Li-S batteries, Li-O-2 batteries). Hence, this review summarizes the recent advances of MOFs-based materials as an electrode for high-performance lithium-ion storage. Firstly, we briefly describe the development history, principle, and mechanism of the lithium-based batteries. Then, the recent advances of MOFs/MOFs composite and MOF-derived materials employed as electrode materials for Lithium-ion batteries, Li-S batteries, and Li-O-2 batteries are reviewed with their electrochemical performances. Finally, we conclude and point out the future direction of MOFs-related materials for lithium-based batteries.
引用
收藏
页数:23
相关论文
共 199 条
[11]   MIL-88A Metal-Organic Framework as a Stable Sulfur-Host Cathode for Long-Cycle Li-S Batteries [J].
Benitez, Almudena ;
Amaro-Gahete, Juan ;
Esquivel, Dolores ;
Jose Romero-Salguero, Francisco ;
Morales, Julian ;
Caballero, Alvaro .
NANOMATERIALS, 2020, 10 (03)
[12]   Metal-organic framework-templated porous SnO/C polyhedrons for high-performance lithium-ion batteries [J].
Bian, Zhuo ;
Li, Ang ;
He, Renyue ;
Song, Huaihe ;
Chen, Xiaohong ;
Zhou, Jisheng ;
Ma, Zhaokun .
ELECTROCHIMICA ACTA, 2018, 289 :389-396
[13]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[14]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[15]   A Highly Conductive MOF of Graphene Analogue Ni3(HITP)2 as a Sulfur Host for High-Performance Lithium-Sulfur Batteries [J].
Cai, Dong ;
Lu, Mengjie ;
Li, La ;
Cao, Junming ;
Chen, Duo ;
Tu, Haoran ;
Li, Junzhi ;
Han, Wei .
SMALL, 2019, 15 (44)
[16]   MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors [J].
Cai, Jingsheng ;
Song, Yingze ;
Chen, Xiang ;
Sun, Zhongti ;
Yi, Yuyang ;
Sun, Jingyu ;
Zhang, Qiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :1757-1766
[17]   Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells [J].
Cai, Xiaoyi ;
Lai, Linfei ;
Shen, Zexiang ;
Lin, Jianyi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (30) :15423-15446
[18]   A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries [J].
Cao, Lujie ;
Lv, Fucong ;
Liu, Ying ;
Wang, Wenxi ;
Huo, Yifeng ;
Fu, Xianzhu ;
Sun, Rong ;
Lu, Zhouguang .
CHEMICAL COMMUNICATIONS, 2015, 51 (21) :4364-4367
[19]   Recent Progress in Electrocatalyst for Li-O2 Batteries [J].
Chang, Zhiwen ;
Xu, Jijing ;
Zhang, Xinbo .
ADVANCED ENERGY MATERIALS, 2017, 7 (23)
[20]   Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries [J].
Chen, Li-Feng ;
Ma, Sheng-Xiang ;
Lu, Shu ;
Feng, Yue ;
Zhang, Jia ;
Xin, Sen ;
Yu, Shu-Hong .
NANO RESEARCH, 2017, 10 (01) :1-11