Gradient estimates for positive harmonic functions by stochastic analysis

被引:13
作者
Arnaudon, Marc
Driver, Bruce K.
Thalmaier, Anton
机构
[1] Univ Luxembourg, Math Lab, L-1511 Luxembourg, Luxembourg
[2] Univ Poitiers, Dept Math, F-86962 Futuroscope, France
[3] Univ Calif San Diego, Dept Math 0112, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
harmonic function; curvature; gradient estimate; Harnack inequality;
D O I
10.1016/j.spa.2006.07.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove Cheng-Yau type inequalities for positive harmonic functions on Riemannian manifolds by using methods of Stochastic Analysis. Rather than evaluating an exact Bismut formula for the differential of a harmonic function, our method relies on a Bismut type inequality which is derived by an elementary integration by parts argument from an underlying submartingale. It is the monotonicity inherited in this submartingale which allows us to establish the pointwise estimates. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:202 / 220
页数:19
相关论文
共 13 条
[1]  
[Anonymous], 1994, CAMBRIDGE MATH LIB
[2]   Complete lifts of connections and stochastic Jacobi fields [J].
Arnaudon, M ;
Thalmaier, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (03) :283-315
[3]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[4]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[5]   Heat equation derivative formulas for vector bundles [J].
Driver, BK ;
Thalmaier, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 183 (01) :42-108
[7]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[8]  
Revuz D., 1999, GRUND MATH WISS
[9]  
SCHOLL W, 1996, UNDERSTANDING GROUP, V2, P127
[10]  
STROOCK DW, 2000, MATH SURVEYS MONOGRA, V74