Distance Eccentric Connectivity Index of Graphs

被引:2
|
作者
Alqesmah, Akram [1 ]
Saleh, Anwar [2 ]
Rangarajan, R. [1 ]
Gunes, Aysun Yurttas [3 ]
Cangul, Ismail Naci [3 ]
机构
[1] Univ Mysore, Dept Studies Math, Mysore 570006, Karnataka, India
[2] Univ Jeddah, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Bursa Uludag Univ, Math, TR-16059 Bursa, Turkey
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2021年 / 61卷 / 01期
关键词
eccentric connectivity index; distance eccentric connectivity index; topological graph index; graph operation; TOPOLOGICAL DESCRIPTOR;
D O I
10.5666/KMJ.2021.61.1.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a connected graph. The eccentric connectivity index of G is defined by xi(C) (G) = Sigma(u)(is an element of V)((G)) deg(u)e(u), where deg(u) and e(u) denote the degree and eccentricity of the vertex u in G, respectively. In this paper, we introduce a new formulation of xi(C) that will be called the distance eccentric connectivity index of G and defined by xi(De)(G) = Sigma(u is an element of V(G))deg(De)(u)e(u) where deg(De)(u) denotes the distance eccentricity degree of the vertex u in G. The aim of this paper is to introduce and study this new topological index. The values of the eccentric connectivity index is calculated for some fundamental graph classes and also for some graph operations. Some inequalities giving upper and lower bounds for this index are obtained.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [41] The eccentric connectivity index of nanotubes and nanotori
    Ashrafi, A. R.
    Saheli, M.
    Ghorbani, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4561 - 4566
  • [42] On the eccentric connectivity index of uniform hypergraphs
    Weng, Weiming
    Zhou, Bo
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 180 - 193
  • [43] Eccentric connectivity index in complementary prisms
    Aytac, Aysun
    Coskun, Belgin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [44] ECCENTRIC CONNECTIVITY INDEX OF TOROIDAL FULLERENES
    Ashrafi, A. R.
    Ghorbani, Modjtaba
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2011, 56 (03): : 207 - 211
  • [45] Extremal trees of the eccentric connectivity index
    Wang, Hua
    ARS COMBINATORIA, 2015, 122 : 55 - 64
  • [46] Comparison between the Szeged index and the eccentric connectivity index
    Das, Kinkar Ch.
    Nadjafi-Arani, M. J.
    DISCRETE APPLIED MATHEMATICS, 2015, 186 : 74 - 86
  • [47] On adjacent eccentric distance sum index
    An, Mingqiang
    FILOMAT, 2024, 38 (10) : 3639 - 3649
  • [48] Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity
    Tavakoli, M.
    Rahbarnia, F.
    Ashrafi, A. R.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (01): : 137 - 143
  • [49] THE ECCENTRIC CONNECTIVITY INDEX OF ARMCHAIR POLYHEX NANOTUBES
    Saheli, Mahboubeh
    Ashrafi, Ali Reza
    MACEDONIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING, 2010, 29 (01) : 71 - 75
  • [50] On modified eccentric connectivity index of NAmn nanotube
    Sajjad, Wasim
    Sardar, Muhammad Shoaib
    Cancan, Murat
    Ediz, Suleyman
    Baig, Abdul Qudair
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (04) : 959 - 972