Distance Eccentric Connectivity Index of Graphs

被引:2
|
作者
Alqesmah, Akram [1 ]
Saleh, Anwar [2 ]
Rangarajan, R. [1 ]
Gunes, Aysun Yurttas [3 ]
Cangul, Ismail Naci [3 ]
机构
[1] Univ Mysore, Dept Studies Math, Mysore 570006, Karnataka, India
[2] Univ Jeddah, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Bursa Uludag Univ, Math, TR-16059 Bursa, Turkey
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2021年 / 61卷 / 01期
关键词
eccentric connectivity index; distance eccentric connectivity index; topological graph index; graph operation; TOPOLOGICAL DESCRIPTOR;
D O I
10.5666/KMJ.2021.61.1.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a connected graph. The eccentric connectivity index of G is defined by xi(C) (G) = Sigma(u)(is an element of V)((G)) deg(u)e(u), where deg(u) and e(u) denote the degree and eccentricity of the vertex u in G, respectively. In this paper, we introduce a new formulation of xi(C) that will be called the distance eccentric connectivity index of G and defined by xi(De)(G) = Sigma(u is an element of V(G))deg(De)(u)e(u) where deg(De)(u) denotes the distance eccentricity degree of the vertex u in G. The aim of this paper is to introduce and study this new topological index. The values of the eccentric connectivity index is calculated for some fundamental graph classes and also for some graph operations. Some inequalities giving upper and lower bounds for this index are obtained.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [31] Reverse eccentric connectivity index
    Ediz, Suleyman
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2012, 6 (5-6): : 664 - 667
  • [32] On the maximal eccentric connectivity indices of graphs
    Zhang Jian-bin
    Liu Zhong-zhu
    Zhou Bo
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (03) : 374 - 378
  • [33] On the minimal eccentric connectivity indices of graphs
    Zhang, Jianbin
    Zhou, Bo
    Liu, Zhongzhu
    DISCRETE MATHEMATICS, 2012, 312 (05) : 819 - 829
  • [34] Computing the eccentric connectivity index and eccentric adjacency index of conjugated trees
    Akhter, Shehnaz
    Farooq, Rashid
    UTILITAS MATHEMATICA, 2020, 114 : 99 - 113
  • [35] ON THE ECCENTRIC CONNECTIVITY INDEX AND WIENER INDEX OF A GRAPH
    Dankelmann, P.
    Morgan, M. J.
    Mukwembi, S.
    Swart, H. C.
    QUAESTIONES MATHEMATICAE, 2014, 37 (01) : 39 - 47
  • [36] On Eccentric Connectivity Index of Eccentric Graph of Regular Dendrimer
    Nagar A.K.
    Sriram S.
    Mathematics in Computer Science, 2016, 10 (2) : 229 - 237
  • [37] Bounds on the General Eccentric Connectivity Index
    Yu, Xinhong
    Imran, Muhammad
    Javed, Aisha
    Jamil, Muhammad Kamran
    Zuo, Xuewu
    SYMMETRY-BASEL, 2022, 14 (12):
  • [38] The Edge Eccentric Connectivity Index of Dendrimers
    Odabas, Zeynep Nihan
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (04) : 783 - 784
  • [39] Edge eccentric connectivity index of nanothorns
    Berberler, Z. N.
    Berberler, M. E.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 (01): : 165 - 170
  • [40] The Modified Eccentric Connectivity Index of Nanocomposites
    Odabas, Zeynep Nihan
    Berberler, Murat Ersen
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (09) : 2208 - 2212