Distance Eccentric Connectivity Index of Graphs

被引:2
|
作者
Alqesmah, Akram [1 ]
Saleh, Anwar [2 ]
Rangarajan, R. [1 ]
Gunes, Aysun Yurttas [3 ]
Cangul, Ismail Naci [3 ]
机构
[1] Univ Mysore, Dept Studies Math, Mysore 570006, Karnataka, India
[2] Univ Jeddah, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Bursa Uludag Univ, Math, TR-16059 Bursa, Turkey
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2021年 / 61卷 / 01期
关键词
eccentric connectivity index; distance eccentric connectivity index; topological graph index; graph operation; TOPOLOGICAL DESCRIPTOR;
D O I
10.5666/KMJ.2021.61.1.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a connected graph. The eccentric connectivity index of G is defined by xi(C) (G) = Sigma(u)(is an element of V)((G)) deg(u)e(u), where deg(u) and e(u) denote the degree and eccentricity of the vertex u in G, respectively. In this paper, we introduce a new formulation of xi(C) that will be called the distance eccentric connectivity index of G and defined by xi(De)(G) = Sigma(u is an element of V(G))deg(De)(u)e(u) where deg(De)(u) denotes the distance eccentricity degree of the vertex u in G. The aim of this paper is to introduce and study this new topological index. The values of the eccentric connectivity index is calculated for some fundamental graph classes and also for some graph operations. Some inequalities giving upper and lower bounds for this index are obtained.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [21] A note on the eccentric connectivity index of graphs of given diameter
    du Toit, Lindie
    Mukwembi, Simon
    Vetrik, Tomas
    UTILITAS MATHEMATICA, 2020, 115 : 267 - 274
  • [22] General eccentric connectivity index of trees and unicyclic graphs
    Vetrik, Tomas
    Masre, Mesfin
    DISCRETE APPLIED MATHEMATICS, 2020, 284 (301-315) : 301 - 315
  • [23] Steiner k-Eccentric Connectivity Index: a Novel Steiner Distance-Based Index
    Huilgol, Medha Itagi
    Shobha, P. H.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 15 (03): : 175 - 187
  • [24] A study of a new variant of the eccentric connectivity index for composite graphs
    Azari, Mahdieh
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08) : 2583 - 2596
  • [25] On the Eccentric-Connectivity Index of Some 3-Fence Graphs and Their Line Graphs
    Malik M.A.
    Farooq R.
    International Journal of Applied and Computational Mathematics, 2017, 3 (2) : 1157 - 1169
  • [26] Multiplicative version of eccentric connectivity index
    Azari, Mahdieh
    DISCRETE APPLIED MATHEMATICS, 2022, 310 : 32 - 42
  • [27] On the eccentric distance sum of graphs
    Ilic, Aleksandar
    Yu, Guihai
    Feng, Lihua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 590 - 600
  • [28] On the eccentric connectivity index of a graph
    Morgan, M. J.
    Mukwembi, S.
    Swart, H. C.
    DISCRETE MATHEMATICS, 2011, 311 (13) : 1229 - 1234
  • [29] On the maximal eccentric connectivity indices of graphs
    ZHANG Jian-bin
    LIU Zhong-zhu
    ZHOU Bo
    Applied Mathematics:A Journal of Chinese Universities, 2014, (03) : 374 - 378
  • [30] On the maximal eccentric connectivity indices of graphs
    Jian-bin Zhang
    Zhong-zhu Liu
    Bo Zhou
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 374 - 378