One method for proving inequalities by computer

被引:23
作者
Malesevic, Branko J. [1 ]
机构
[1] Univ Belgrade, Fac Elect Engn, Belgrade 11120, Serbia
关键词
Numerical Calculation; Computer Program; Rational Approximation; Analytical Inequality; Maple Computer Program;
D O I
10.1155/2007/78691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a numerical method for proving a class of analytical inequalities via minimax rational approximations. All numerical calculations in this paper are given by Maple computer program.
引用
收藏
页数:8
相关论文
共 28 条
[1]  
ABRAMOWITZ M, 1972, US NBS APPL MATH, V55
[2]   On Ramanujan's double inequality for the gamma function [J].
Alzer, H .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :601-607
[3]  
BATIR N, 2005, J INEQUALITIES PURE, V6
[4]   Computing machine-efficient polynomial approximations [J].
Brisebarre, Nicolas ;
Mueller, Jean-Michel ;
Tisserand, Arnaud .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (02) :236-256
[5]  
CERONE P, 2003, RGMIA J INEQUALITIES, V6
[6]   The best bounds in Wallis' inequality [J].
Chen, CP ;
Qi, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) :397-401
[7]  
DEDINECHIN F, 2005, 5683 INRIA
[8]   Inequalities for beta and gamma functions via some classical and new integral inequalities [J].
Dragomir, SS ;
Agarwal, RP ;
Barnett, NS .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (02) :103-165
[9]   On some properties of the gamma function [J].
Elbert, A ;
Laforgia, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) :2667-2673
[10]  
Fike C.T., 1968, COMPUTER EVALUATION