On the Faber coefficients of functions univalent in an ellipse

被引:3
作者
Haliloglu, E [1 ]
机构
[1] IOWA STATE UNIV SCI & TECHNOL,DEPT MATH,AMES,IA 50011
关键词
Faber polynomials; Faber coefficients; Chebyshev polynomials; Jacobi elliptic sine function;
D O I
10.1090/S0002-9947-97-01721-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be the elliptical domain E={x+iy: x(2)/(5/3)(2)+y(2)/(3/4)(2)<1} Let S(E) denote the class of functions Fit) analytic and univalent in E and satisfying the conditions F(0) = 0 and F'(0) = 1. In this paper, we obtain global sharp bounds for the Faber coefficients of the functions Fit) in certain related classes and subclasses of S(E).
引用
收藏
页码:2901 / 2916
页数:16
相关论文
共 12 条
[1]  
[Anonymous], 1975, LECT NOTES MATH
[2]  
Brannan DA., 1973, ANN ACAD SCI FENN-M, V523, P3
[3]   CONVEX HULLS OF SOME CLASSICAL FAMILIES OF UNIVALENT FUNCTIONS [J].
BRICKMAN, L ;
MACGREGOR, TH ;
WILKEN, DR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 156 (MAY) :91-+
[4]   The variability range of the coefficients of the power series, which do not reach a given value [J].
Caratheodory, C .
MATHEMATISCHE ANNALEN, 1907, 64 :95-115
[5]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[6]  
Duren PL., 1983, Univalent Functions
[7]  
HALILOGLU E, 1993, THESIS IOWA STATE U
[8]  
LAWDEN DF, 1989, ELLIPTIC FUNCTIONS A
[9]  
LOEWNER K, 1917, SB SACHS AKAD WISS, V69, P89
[10]  
Nehari Z., 1952, Conformal Mappings