Regularity criteria of weak solutions to the three-dimensional micropolar flows

被引:69
作者
Dong, Bo-Qing [1 ]
Chen, Zhi-Min [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
[2] Univ Southampton, Sch Engn Sci, Southampton SO17 1BJ, Hants, England
关键词
flow; Navier-Stokes equations; EQUATIONS;
D O I
10.1063/1.3245862
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Regularity criteria of weak solutions to the three-dimensional micropolar fluid motion equations are discussed. Sufficient conditions for the regularity of weak solutions are presented by imposing Serrin's type growth conditions on the velocity field in Lorentz spaces, multiplier spaces, bounded mean oscillation spaces, and Besov spaces, respectively. The findings demonstrate that the velocity field plays a dominant role in the regularity problem of micropolar fluid motion equations.
引用
收藏
页数:13
相关论文
共 31 条
[21]  
Mazya V.G., 1964, IZV AKAD NAUK SSSR M, V28, P1145
[22]   CONVOLUTION OPERATORS AND (P, Q) SPACES [J].
ONEIL, R .
DUKE MATHEMATICAL JOURNAL, 1963, 30 (01) :129-&
[23]  
POPEL A S, 1974, Biorheology, V11, P427
[24]   Magneto-micropolar fluid motion: Existence and uniqueness of strong solution [J].
RojasMedar, MA .
MATHEMATISCHE NACHRICHTEN, 1997, 188 :301-319
[25]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187
[26]  
Stein E., 1993, Harmonic Analysis: Real Variable Methods, Orthogonality and Socillatory Integrals
[28]   Remarks on regularities for the 3D MHD equations [J].
Zhou, Y .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (05) :881-886
[29]  
ZHOU Y, REGULARITY CRITERIA
[30]  
ZHOU Y, Z ANGEW MAT IN PRESS