Regularity criteria of weak solutions to the three-dimensional micropolar flows

被引:69
作者
Dong, Bo-Qing [1 ]
Chen, Zhi-Min [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
[2] Univ Southampton, Sch Engn Sci, Southampton SO17 1BJ, Hants, England
关键词
flow; Navier-Stokes equations; EQUATIONS;
D O I
10.1063/1.3245862
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Regularity criteria of weak solutions to the three-dimensional micropolar fluid motion equations are discussed. Sufficient conditions for the regularity of weak solutions are presented by imposing Serrin's type growth conditions on the velocity field in Lorentz spaces, multiplier spaces, bounded mean oscillation spaces, and Besov spaces, respectively. The findings demonstrate that the velocity field plays a dominant role in the regularity problem of micropolar fluid motion equations.
引用
收藏
页数:13
相关论文
共 31 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 2010, Theory of Function Spaces
[3]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[4]   Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids [J].
Boldrini, JL ;
Rojas-Medar, MA ;
Fernández-Cara, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (11) :1499-1525
[5]  
Chemin J. -Y., 1998, Perfect Incompressible Fluids
[6]   The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 275 (03) :861-872
[7]   Decay estimates of linearized micropolar fluid flows in R3 space with applications to L3-strong solutions [J].
Chen, Zhi-Min ;
Price, W. G. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2006, 44 (13-14) :859-873
[8]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[9]  
Doi M., 1986, The Theory of Polymer Dynamics
[10]  
DONG B, PRESSURE REGUL UNPUB