Finite speed of propagation for the Cahn-Hilliard equation with degenerate mobility

被引:1
作者
Chen, Bosheng [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun, Jilin, Peoples R China
关键词
Ming Mei; Cahn-Hilliard equation; degenerate mobility; finite speed of propagation; WEAK SOLUTIONS; THIN; SUPPORT; TIME;
D O I
10.1080/00036811.2019.1659957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Cahn-Hilliard equation with degenerate mobility. We obtain that the Cahn-Hilliard equation has the finite speed of propagation for the nonnegative strong solutions when 0<n<2.
引用
收藏
页码:1693 / 1726
页数:34
相关论文
共 50 条
[41]   A Note on the Viscous Cahn-Hilliard Equation [J].
柯媛元 ;
尹景学 .
NortheasternMathematicalJournal, 2004, (01) :101-108
[42]   The Cahn-Hilliard Equation with Logarithmic Potentials [J].
Cherfils, Laurence ;
Miranville, Alain ;
Zelik, Sergey .
MILAN JOURNAL OF MATHEMATICS, 2011, 79 (02) :561-596
[43]   The Cahn-Hilliard Equation with Logarithmic Potentials [J].
Laurence Cherfils ;
Alain Miranville ;
Sergey Zelik .
Milan Journal of Mathematics, 2011, 79 :561-596
[44]   A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation [J].
Tingchun WANG ;
Limei ZHAO ;
Boling GUO .
Acta Mathematicae Applicatae Sinica, 2015, 31 (04) :863-878
[45]   A Robust Solver for a Mixed Finite Element Method for the Cahn-Hilliard Equation [J].
Brenner, Susanne C. ;
Diegel, Amanda E. ;
Sung, Li-Yeng .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) :1234-1249
[46]   A class of stable and conservative finite difference schemes for the Cahn-Hilliard equation [J].
Ting-chun Wang ;
Li-mei Zhao ;
Bo-ling Guo .
Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 :863-878
[47]   DISCONTINUOUS GALERKIN FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH CONVECTION [J].
Kay, David ;
Styles, Vanessa ;
Sueli, Endre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :2660-2685
[48]   A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation [J].
Wang, Ting-chun ;
Zhao, Li-mei ;
Guo, Bo-ling .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (04) :863-878
[49]   Hessian recovery based finite element methods for the Cahn-Hilliard equation [J].
Xu, Minqiang ;
Guo, Hailong ;
Zou, Qingsong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 386 :524-540
[50]   A perturbation of the Cahn-Hilliard equation with logarithmic nonlinearity [J].
Conti, Monica ;
Gatti, Stefania ;
Miranville, Alain .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 382 :50-76