Finite speed of propagation for the Cahn-Hilliard equation with degenerate mobility

被引:1
作者
Chen, Bosheng [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun, Jilin, Peoples R China
关键词
Ming Mei; Cahn-Hilliard equation; degenerate mobility; finite speed of propagation; WEAK SOLUTIONS; THIN; SUPPORT; TIME;
D O I
10.1080/00036811.2019.1659957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Cahn-Hilliard equation with degenerate mobility. We obtain that the Cahn-Hilliard equation has the finite speed of propagation for the nonnegative strong solutions when 0<n<2.
引用
收藏
页码:1693 / 1726
页数:34
相关论文
共 50 条
[31]   SPECIAL CASE OF THE CAHN-HILLIARD EQUATION [J].
Frolovskaya, O. A. ;
Admaev, O. V. ;
Pukhnachev, V. V. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 :324-334
[32]   A new formulation of the Cahn-Hilliard equation [J].
Miranville, A ;
Piétrus, A .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (02) :285-307
[33]   A Cahn-Hilliard equation with singular diffusion [J].
Schimperna, Giulio ;
Pawlow, Irena .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) :779-803
[34]   Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility [J].
Liu, Chang Chun ;
Qi, Yuan Wei ;
Yin, Jing Xue .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) :1139-1150
[35]   A PRECONDITIONED STEEPEST DESCENT SOLVER FOR THE CAHN-HILLIARD EQUATION WITH VARIABLE MOBILITY [J].
Chen, X. I. A. O. C. H. U. N. ;
Wang, C. H. E. N. G. ;
Wise, Steven M. .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) :839-863
[36]   Existence of solution to a Cahn-Hilliard equation [J].
Mourad, Ayman ;
Taha, Zahraa .
ASYMPTOTIC ANALYSIS, 2022, 130 (3-4) :387-408
[37]   Convective-diffusive Cahn-Hilliard Equation with Concentration Dependent Mobility [J].
刘长春 ;
尹景学 .
NortheasternMathematicalJournal, 2003, (01) :86-94
[38]   Regularity of Solutions of the Cahn-Hilliard Equation with Non-constant Mobility [J].
Chang Chun LIU Department of Mathematics .
ActaMathematicaSinica(EnglishSeries), 2006, 22 (04) :1139-1150
[39]   Cahn-Hilliard equation with regularization term [J].
Mheich, Rim .
ASYMPTOTIC ANALYSIS, 2023, 133 (04) :499-533
[40]   Some generalizations of the Cahn-Hilliard equation [J].
Miranville, A .
ASYMPTOTIC ANALYSIS, 2000, 22 (3-4) :235-259