Finite speed of propagation for the Cahn-Hilliard equation with degenerate mobility

被引:1
作者
Chen, Bosheng [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun, Jilin, Peoples R China
关键词
Ming Mei; Cahn-Hilliard equation; degenerate mobility; finite speed of propagation; WEAK SOLUTIONS; THIN; SUPPORT; TIME;
D O I
10.1080/00036811.2019.1659957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Cahn-Hilliard equation with degenerate mobility. We obtain that the Cahn-Hilliard equation has the finite speed of propagation for the nonnegative strong solutions when 0<n<2.
引用
收藏
页码:1693 / 1726
页数:34
相关论文
共 50 条
  • [21] The convective Cahn-Hilliard equation
    Eden, A.
    Kalantarov, V. K.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (04) : 455 - 461
  • [22] Regularity of solutions of the Cahn-Hilliard equation with concentration dependent mobility
    Yin, JX
    Liu, CC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (05) : 543 - 554
  • [23] Mobility inference of the Cahn-Hilliard equation from a model experiment
    Mao, Zirui
    Demkowicz, Michael J.
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (13) : 2830 - 2842
  • [24] Analysis of the Cahn-Hilliard Equation with a Chemical Potential Dependent Mobility
    Grasselli, Maurizio
    Miranville, Alain
    Rossi, Riccarda
    Schimperna, Giulio
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (07) : 1193 - 1238
  • [26] GEOMETRIC EVOLUTION OF BILAYERS UNDER THE DEGENERATE FUNCTIONALIZED CAHN-HILLIARD EQUATION
    Dai, Shibin
    Luong, Toai
    Ma, X., I
    MULTISCALE MODELING & SIMULATION, 2022, 20 (03) : 1127 - 1146
  • [27] The existence of Non-blow-up phenomenon for a generalized nonlocal Cahn-Hilliard equation with degenerate mobility
    Li, Zhenbang
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2023, 16 (01): : 65 - 79
  • [28] A WEAK GALERKIN FINITE ELEMENT SCHEME FOR THE CAHN-HILLIARD EQUATION
    Wang, Junping
    Zhai, Qilong
    Zhang, Ran
    Zhang, Shangyou
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 211 - 235
  • [29] An Explicit Adaptive Finite Difference Method for the Cahn-Hilliard Equation
    Ham, Seokjun
    Li, Yibao
    Jeong, Darae
    Lee, Chaeyoung
    Kwak, Soobin
    Hwang, Youngjin
    Kim, Junseok
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [30] A finite volume / discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging
    Frank, Florian
    Liu, Chen
    Alpak, Faruk O.
    Riviere, Beatrice
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (02) : 543 - 563