Finite speed of propagation for the Cahn-Hilliard equation with degenerate mobility

被引:1
作者
Chen, Bosheng [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun, Jilin, Peoples R China
关键词
Ming Mei; Cahn-Hilliard equation; degenerate mobility; finite speed of propagation; WEAK SOLUTIONS; THIN; SUPPORT; TIME;
D O I
10.1080/00036811.2019.1659957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Cahn-Hilliard equation with degenerate mobility. We obtain that the Cahn-Hilliard equation has the finite speed of propagation for the nonnegative strong solutions when 0<n<2.
引用
收藏
页码:1693 / 1726
页数:34
相关论文
共 50 条
[21]   A nonconforming finite element method for the Cahn-Hilliard equation [J].
Zhang, Shuo ;
Wang, Ming .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) :7361-7372
[22]   The convective Cahn-Hilliard equation [J].
Eden, A. ;
Kalantarov, V. K. .
APPLIED MATHEMATICS LETTERS, 2007, 20 (04) :455-461
[23]   Mobility inference of the Cahn-Hilliard equation from a model experiment [J].
Mao, Zirui ;
Demkowicz, Michael J. .
JOURNAL OF MATERIALS RESEARCH, 2021, 36 (13) :2830-2842
[24]   Regularity of solutions of the Cahn-Hilliard equation with concentration dependent mobility [J].
Yin, JX ;
Liu, CC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (05) :543-554
[25]   Analysis of the Cahn-Hilliard Equation with a Chemical Potential Dependent Mobility [J].
Grasselli, Maurizio ;
Miranville, Alain ;
Rossi, Riccarda ;
Schimperna, Giulio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (07) :1193-1238
[26]   Spectral Method for a Class of Cahn-Hilliard Equation with Nonconstant Mobility [J].
Chai Shimin Zou Yongkui and Gong Chengchun School of Mathematics Jilin University Changchun .
CommunicationsinMathematicalResearch, 2009, 25 (01) :9-18
[27]   The existence of Non-blow-up phenomenon for a generalized nonlocal Cahn-Hilliard equation with degenerate mobility [J].
Li, Zhenbang .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2023, 16 (01) :65-79
[28]   GEOMETRIC EVOLUTION OF BILAYERS UNDER THE DEGENERATE FUNCTIONALIZED CAHN-HILLIARD EQUATION [J].
Dai, Shibin ;
Luong, Toai ;
Ma, X., I .
MULTISCALE MODELING & SIMULATION, 2022, 20 (03) :1127-1146
[29]   A WEAK GALERKIN FINITE ELEMENT SCHEME FOR THE CAHN-HILLIARD EQUATION [J].
Wang, Junping ;
Zhai, Qilong ;
Zhang, Ran ;
Zhang, Shangyou .
MATHEMATICS OF COMPUTATION, 2019, 88 (315) :211-235
[30]   A finite volume / discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging [J].
Frank, Florian ;
Liu, Chen ;
Alpak, Faruk O. ;
Riviere, Beatrice .
COMPUTATIONAL GEOSCIENCES, 2018, 22 (02) :543-563