On the number of closed walks in vertex-transitive graphs

被引:5
作者
Jajcay, Robert [1 ]
Malnic, Aleksander
Marusic, Dragan
机构
[1] Indiana State Univ, Dept Math, Terre Haute, IN 47809 USA
[2] Univ Ljubljana, IMFM, Oddelek Matemat, Ljubljana 1111, Slovenia
关键词
vertex-transitive graphs; Cayley graphs; closed walks; cycles; automorphism groups;
D O I
10.1016/j.disc.2005.09.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The results of Siran and the first author [A construction of vertex-transitive non-Cayley graphs, Australas. J. Combin. 10 (1994) 105-114; More constructions of vertex-transitive non-Cayley graphs based on counting closed walks, Australas. J. Combin. 14 (1996) 121-132] are generalized, and new formulas for the number of closed walks of length p(r) or pq, where p and q are primes, valid for all vertex-transitive graphs are found. Based on these formulas, several simple tests for vertex-transitivity are presented, as well as lower bounds on the orders of the smallest vertex- and arc-transitive groups of automorphisms for vertex-transitive graphs of given valence. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:484 / 493
页数:10
相关论文
共 17 条
[1]  
Clark Allan, 1984, ELEMENTS ABSTRACT AL
[2]  
COXETER HSM, 1983, P LOND MATH SOC, V46, P117
[3]   On solvable groups and circulant graphs [J].
Dobson, E .
EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (07) :881-885
[4]   The existence of selfcomplementary circulant graphs [J].
Froncek, D ;
Rosa, A ;
Siran, J .
EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (07) :625-628
[5]  
Gross J.L., 1987, Topological graph theory
[6]  
Heydemann MC, 1997, NATO ADV SCI I C-MAT, V497, P167
[7]   SPECIAL ISSUE - INTERCONNECTION NETWORKS AND ALGORITHMS - INTRODUCTION [J].
HSU, DF .
NETWORKS, 1993, 23 (04) :211-213
[8]  
Jajcay R., 1996, AUSTRALAS J COMBIN, V14, P121
[9]  
KURCZ R., 1999, ACTA MATH U COMENIAN, V68, P127
[10]   VERTEX-TRANSITIVE GRAPHS - SYMMETRIC GRAPHS OF PRIME VALENCY [J].
LORIMER, P .
JOURNAL OF GRAPH THEORY, 1984, 8 (01) :55-68