C*-algebras of infinite graphs and Cuntz-Krieger algebras

被引:5
作者
Brenken, B [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2002年 / 45卷 / 03期
关键词
D O I
10.4153/CMB-2002-035-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cuntz-Krieger algebra O(B) is defined for an arbitrary, possibly infinite and infinite valued, matrix B. A graph C*-algebra G* (E) is introduced for an arbitrary directed graph E, and is shown to coincide with a previously defined graph algebra C* (E) if each source of E emits only finitely many edges. Each graph algebra G* (E) is isomorphic to the Cuntz-Krieger algebra O(B) where B is the vertex matrix of E.
引用
收藏
页码:321 / 336
页数:16
相关论文
共 9 条
[1]  
[Anonymous], INTRO SYMBOLIC DYNAM
[2]  
BRENKEN B, IN PRESS T AM MATH S
[3]   CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS [J].
CUNTZ, J ;
KRIEGER, W .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :251-268
[4]  
EXEL R, IN PRESS J REINE ANG
[5]  
FOWLER N, 1998, C ALGEBRAS INFINITE
[6]   The ideal structure of Cuntz-Krieger algebras [J].
Huef, AA ;
Raeburn, I .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :611-624
[7]   Graphs, groupoids, and Cuntz-Krieger algebras [J].
Kumjian, A ;
Pask, D ;
Raeburn, I ;
Renault, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (02) :505-541
[8]   Cuntz-Krieger algebras of directed graphs [J].
Kumjian, A ;
Pask, D ;
Raeburn, I .
PACIFIC JOURNAL OF MATHEMATICS, 1998, 184 (01) :161-174
[9]  
Rordam M., 1995, K-Theory, V9, P31, DOI DOI 10.1007/BF00965458