Mossbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite

被引:26
作者
Maksimova, A. A. [1 ]
Klencsar, Z. [2 ]
Oshtrakh, M. I. [1 ,3 ]
Petrova, E. V. [1 ]
Grokhovsky, V. I. [1 ]
Kuzmann, E. [4 ]
Homonnay, Z. [4 ]
Semionkin, V. A. [1 ,3 ]
机构
[1] Ural Fed Univ, Inst Phys & Technol, Dept Phys Tech & Devices Qual Control, Ekaterinburg 620002, Russia
[2] Hungarian Acad Sci, Res Ctr Nat Sci, Inst Mat & Environm Chem, Magyar Tudosok Korutja 2, H-1117 Budapest, Hungary
[3] Ural Fed Univ, Inst Phys & Technol, Dept Expt Phys, Ekaterinburg 620002, Russia
[4] Eotvos Lorand Univ, Inst Chem, Pazmany Setany 1-A, H-1117 Budapest, Hungary
来源
HYPERFINE INTERACTIONS | 2016年 / 237卷
基金
匈牙利科学研究基金会; 俄罗斯基础研究基金会;
关键词
Mossbauer spectroscopy; Chelyabinsk LL5 ordinary chondrite; Mossbauer parameters; Troilite; HIGH-VELOCITY RESOLUTION; SPECTROSCOPY; FRAGMENT;
D O I
10.1007/s10751-016-1218-4
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The influence of the fit accuracy of the troilite component in the Mossbauer spectra of ordinary chondrites on the parameters obtained for other spectral components was evaluated using the Mossbauer spectrum of Chelyabinsk LL5 meteorite fragment with light lithology as a typical example. It was shown that with respect to the application of a usual sextet component where quadrupole interaction is taken into account in the first-order perturbation limit, substantial improvement of the spectrum fit can be achieved either by using the full Hamiltonian description of the troilite component or by its formal approximation with the superposition of three symmetric doublet components. Parameter values obtained for the main spectral components related to olivine and pyroxene were not sensitive to the fit of troilite component while parameters of the minor spectral components depended on the way of troilite component fitting.
引用
收藏
页数:8
相关论文
共 20 条
[1]  
Cadogan JM, 2013, HYPERFINE INTERACT, V222, pS91, DOI DOI 10.1007/S10751-012-0644-1
[2]  
Forder S. D., 2001, HYPERFINE INTERACT C, V5, P405
[3]   Mossbauer studies of Soltmany and Shisr 176 meteorites - comparison with other ordinary chondrites [J].
Galazka-Friedman, J. ;
Szlachta, K. ;
Karwowski, L. ;
Wozniak, M. .
HYPERFINE INTERACTIONS, 2014, 226 (1-3) :593-600
[4]   A Mossbauer spectral study of the Jilin meteorite [J].
Grandjean, F ;
Long, GJ ;
Hautot, D ;
Whitney, DL .
HYPERFINE INTERACTIONS, 1998, 116 (1-4) :105-115
[5]   CHEMICAL-ANALYSES OF METEORITES - A COMPILATION OF STONY AND IRON METEORITE ANALYSES [J].
JAROSEWICH, E .
METEORITICS, 1990, 25 (04) :323-337
[6]   User-friendly software for Mossbauer spectrum analysis [J].
Klencsar, Z ;
Kuzmann, E ;
Vertes, A .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY-ARTICLES, 1996, 210 (01) :105-118
[7]   A MOSSBAUER INVESTIGATION OF NATURAL TROILITE FROM THE AGPALILIK METEORITE [J].
KRUSE, O ;
ERICSSON, T .
PHYSICS AND CHEMISTRY OF MINERALS, 1988, 15 (06) :509-513
[8]  
KRUSE O, 1990, AM MINERAL, V75, P755
[9]   Mossbauer study of Slovak meteorites [J].
Lipka, J. ;
Sitek, J. ;
Dekan, J. ;
Degmova, J. ;
Porubcan, V. .
HYPERFINE INTERACTIONS, 2013, 218 (1-3) :107-111
[10]   The 57Fe hyperfine interactions in the iron bearing phases in different fragments of Chelyabinsk LL5 meteorite: a comparative study using Mossbauer spectroscopy with a high velocity resolution [J].
Maksimova, A. A. ;
Oshtrakh, M. I. ;
Petrova, E. V. ;
Grokhovsky, V. I. ;
Semionkin, V. A. .
HYPERFINE INTERACTIONS, 2015, 231 (1-3) :79-87