Implementation of meso-scale radioactive dispersion model for GPU

被引:1
作者
Sunarko [1 ]
Suud, Z. [2 ]
机构
[1] Natl Nucl Energy Agcy Indonesia BATAN, Nucl Energy Assessment Ctr, Jl Kuningan Barat, Jakarta 10270, Indonesia
[2] Bandung Inst Technol ITB, Phys Dept, Jl Ganesha 10, Bandung, Indonesia
关键词
D O I
10.3139/124.110646
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条
  • [31] Meso-scale modeling of plasticity in composites
    Acton, K.
    Graham-Brady, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (9-12) : 920 - 932
  • [32] Design and fabrication of a meso-scale gyroscope
    Kotru, Sushma
    Zhong, Jian
    Highsmith, Alton
    Jackson, John E.
    2008 IEEE WORKSHOP ON MICROELECTRONICS AND ELECTRON DEVICES (WMED), 2008, : 5 - +
  • [33] Phase separation of 2D meso-scale Coulombic crystals from meso-scale polarizable "solvent"
    Kaufman, George K.
    Thomas, Samuel W., III
    Reches, Meital
    Shaw, Bryan F.
    Feng, Ji
    Whitesides, George M.
    SOFT MATTER, 2009, 5 (06) : 1188 - 1191
  • [34] Influence of underlying surface forest fraction to the meso-scale wind fields and dispersion conditions
    Kaasik, M
    AIR POLLUTION MODELLING AND SIMULATION, PROCEEDINGS, 2002, : 355 - 360
  • [35] MESO-SCALE OIL CONDITION SENSOR
    McClelland, Bradley D.
    Rorrer, Ronald A. L.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 9, 2012, : 351 - 358
  • [36] A meso-scale cartography of the AI ecosystem
    Gargiulo, Floriana
    Fontaine, Sylvain
    Dubois, Michel
    Tubaro, Paola
    QUANTITATIVE SCIENCE STUDIES, 2023, 4 (03): : 574 - 593
  • [37] Machine learnt meso-scale models
    Singh, Samrendra
    Bejagam, Karteek
    Deshmukh, Sanket
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [38] Combustion in meso-scale vortex chambers
    Wu, Ming-hsun
    Wang, Yanxing
    Yang, Vigor
    Yetter, Richard A.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 : 3235 - 3242
  • [39] Interactive Meso-scale Simulation of Skyscapes
    Vimont, Ulysse
    Gain, James
    Lastic, Maud
    Cordonnier, Guillaume
    Abiodun, Babatunde
    Cani, Marie-Paule
    COMPUTER GRAPHICS FORUM, 2020, 39 (02) : 585 - 596
  • [40] Robotic microassembly for meso-scale application
    Ye, Xin
    Gao, Jun
    Zhang, Zhijing
    Shao, Chao
    Liu, Pan
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2015, 42 (02): : 142 - 148