Singularly Perturbed Lie Bracket Approximation

被引:18
作者
Duerr, Hans-Bernd [1 ]
Krstic, Miroslav [2 ,3 ]
Scheinker, Alexander [4 ]
Ebenbauer, Christian [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Cymer Ctr Control Syst & Dynam, La Jolla, CA 92093 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Extremum seeking; Lie brackets; singular perturbations; PRACTICAL STABILITY; SYSTEMS; SEEKING;
D O I
10.1109/TAC.2015.2416925
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the interconnection of two dynamical systems where one has an input-affine vector field. By employing a singular perturbation and a Lie bracket analysis technique, we show how the trajectories can be approximated by two decoupled systems. From this trajectory approximation result and the stability properties of the decoupled systems, we derive stability properties of the overall system.
引用
收藏
页码:3287 / 3292
页数:6
相关论文
共 15 条
  • [1] [Anonymous], 1967, Stability of Motion
  • [2] [Anonymous], 1969, PURE APPL MATH
  • [3] Bressan A, 2007, INTRO MATH THEORY CO, V2
  • [4] Lie bracket approximation of extremum seeking systems
    Duerr, Hans-Bernd
    Stankovic, Milos S.
    Ebenbauer, Christian
    Johansson, Karl Henrik
    [J]. AUTOMATICA, 2013, 49 (06) : 1538 - 1552
  • [5] SINGULAR PERTURBATIONS ON INFINITE INTERVAL
    HOPPENSTEADT, FC
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 123 (02) : 521 - +
  • [6] Khalil H.K., 2002, Nonlinear systems, V3rd
  • [7] Kokotovic P., 1987, SOC IND APPL MATH, V25
  • [8] KURZWEIL J, 1987, J APPL MATH PHYS, V38, P241
  • [9] Michalowsky S, 2013, IEEE DECIS CONTR P, P3981, DOI 10.1109/CDC.2013.6760498
  • [10] Moreau L, 1998, IEEE DECIS CONTR P, P1428, DOI 10.1109/CDC.1998.758487