Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery

被引:33
作者
Dimitrakellis, Panagiotis [1 ,2 ]
Delikonstantis, Evangelos [3 ]
Stefanidis, Georgios D. [3 ,4 ]
Vlachos, Dionisios G. [1 ,2 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[2] Catalysis Ctr Energy Innovat, Newark, DE 19716 USA
[3] Univ Ghent, Lab Chem Technol, Tech Lane Ghent Sci Pk 125, B-9052 Ghent, Belgium
[4] Natl Tech Univ Athens, Sch Chem Engn, Iroon Polytech 9, Athens 15780, Greece
关键词
DIELECTRIC BARRIER DISCHARGE; TAR MODEL-COMPOUND; GLIDING ARC PLASMA; PRODUCE FERMENTABLE MONOSACCHARIDES; NONTHERMAL ATMOSPHERIC PLASMA; PULSED CORONA DISCHARGE; SITU GENERATED HYDROGEN; MUNICIPAL SOLID-WASTE; MICROWAVE PLASMA; RICE STRAW;
D O I
10.1039/d1gc03436g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lignocellulosic biomass conversion to renewable, carbon-neutral materials, fuels, and chemicals is the cornerstone of the transition to a sustainable future bioeconomy. Green energy in the form of electricity needs to be coupled with or substitute conventional thermally driven processes to realize small-scale, economically viable and environmentally friendly biorefineries. Gas discharge plasmas enable the conversion of renewable electric energy, supplied in the form of an electric field, to chemical energy through the formation of a highly reactive environment that can induce several transformations related to agricultural waste valorization processes. Herein, we review the application of plasma technology to lignocellulosic biomass upgrade, aiming to provide the scientific background and technical challenges in this rapidly emerging research field. To bridge the gap between plasma science and biomass valorization technologies, we initially present the technical aspects of plasma reactors related to biomass processing and further discuss the advances in plasma processing for each biomass conversion technology, providing insights into the related plasma chemistry and interaction mechanisms. We first focus on the low and medium-temperature biomass conversion processes, including biomass pretreatment and delignification to promote enzyme or acid-catalyzed hydrolysis to sugars and biomass liquefaction using plasma electrolysis. Then we discuss the high and very high-temperature conversion processes, such as plasma-assisted pyrolysis and gasification to syngas and plasma application to tar removal, combustion, and vitrification. Overall, this review provides knowledge at the interface of plasma science and biomass conversion technology to promote the interaction between the individual communities, which is crucial for the further advancement of the field.
引用
收藏
页码:2680 / 2721
页数:42
相关论文
共 332 条
[1]   Solar gasification of biomass: A molten salt pyrolysis study [J].
Adinberg, R ;
Epstein, M ;
Karni, J .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (03) :850-857
[2]  
Alonso DM, 2013, ENERG ENVIRON SCI, V6, P76, DOI [10.1039/c2ee23617f, 10.1039/C2EE23617F]
[3]   Bimetallic catalysts for upgrading of biomass to fuels and chemicals [J].
Alonso, David Martin ;
Wettstein, Stephanie G. ;
Dumesic, James A. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (24) :8075-8098
[4]   Catalytic conversion of biomass to biofuels [J].
Alonso, David Martin ;
Bond, Jesse Q. ;
Dumesic, James A. .
GREEN CHEMISTRY, 2010, 12 (09) :1493-1513
[5]   Treatment of Sugarcane Bagasse Lignin Employing Atmospheric Pressure Microplasma Jet in Argon [J].
Amorim, Jayr ;
Oliveira, Carlos ;
Souza-Correa, Jorge A. ;
Ridenti, Marco A. .
PLASMA PROCESSES AND POLYMERS, 2013, 10 (08) :670-678
[6]   Investigation of plasma gasification of carbonaceous technogeneous wastes [J].
An'shakov A.S. ;
Faleev V.A. ;
Danilenko A.A. ;
Urbakh E.K. ;
Urbakh A.E. .
Thermophysics and Aeromechanics, 2007, 14 (4) :607-616
[7]   Lignin-based copolymer adhesives for composite wood panels - A review [J].
Ang, Aik Fei ;
Ashaari, Zaidon ;
Lee, Seng Hua ;
Tahir, Paridah Md ;
Halis, Rasmina .
INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2019, 95
[8]  
[Anonymous], 2009, REV TECHNOLOGIES GAS
[9]   Syngas production by plasma treatments of alcohols, bio-oils and wood [J].
Arabi, K. ;
Aubry, O. ;
Khacef, A. ;
Cormier, J-M .
12TH HIGH-TECH PLASMA PROCESSES CONFERENCE (HTPP-12), 2012, 406
[10]   Cold atmospheric plasma: Sources, processes, and applications [J].
Bardos, L. ;
Barankova, H. .
THIN SOLID FILMS, 2010, 518 (23) :6705-6713