Security of the decoy state method for quantum key distribution

被引:19
|
作者
Trushechkin, A. S. [1 ,2 ]
Kiktenko, E. O. [1 ,2 ,3 ,4 ]
Kronberg, D. A. [1 ,3 ,4 ]
Fedorov, A. K. [3 ,4 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
[2] Natl Univ Sci & Technol MISIS, Competence Ctr Quantum Commun, Natl Technol Initiat, Leninskii Prosp 4, Moscow 119049, Russia
[3] Int Ctr Quantum Opt & Quantum Technol, Russian Quantum Ctr, Ul Novaya 100, Skolkovo 143025, Moscow Region, Russia
[4] Natl Res Univ, Moscow Inst Phys & Technol, Inst Skii Per 9, Dolgoprudnyi 141701, Moscow Region, Russia
基金
俄罗斯科学基金会;
关键词
quantum cryptography; quantum key distribution; BB84; decoy states; CRYPTOGRAPHY; AUTHENTICATION; INFORMATION; COMPUTERS; PROOF;
D O I
10.3367/UFNe.2020.11.038882
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum cryptography or, more precisely, quantum key distribution (QKD), is one of the advanced areas in the field of quantum technologies. The confidentiality of keys distributed with the use of QKD protocols is guaranteed by the fundamental laws of quantum mechanics. This paper is devoted to the decoy state method, a countermeasure against vulnerabilities caused by the use of coherent states of light for QKD protocols whose security is proved under the assumption of single-photon states. We give a formal security proof of the decoy state method against all possible attacks. We compare two widely known attacks on multiphoton pulses: photon-number splitting and beam splitting. Finally, we discuss the equivalence of polarization and phase coding.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [1] Passive Decoy State Quantum Key Distribution
    Curty, Marcos
    Moroder, Tobias
    Ma, Xiongfeng
    Luetkenhaus, Norbert
    QUANTUM COMMUNICATION AND QUANTUM NETWORKING, 2010, 36 : 132 - +
  • [2] Security Bounds for Efficient Decoy-State Quantum Key Distribution
    Lucamarini, Marco
    Dynes, James F.
    Froehlich, Bernd
    Yuan, Zhiliang
    Shields, Andrew J.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03) : 1 - 8
  • [3] DECOY STATE QUANTUM KEY DISTRIBUTION
    Ali, Sellami
    Saharudin, Suhairi
    Wahiddin, M. R. B.
    IIUM ENGINEERING JOURNAL, 2009, 10 (02): : 81 - 86
  • [4] Tight security bounds for decoy-state quantum key distribution
    Yin, Hua-Lei
    Zhou, Min-Gang
    Gu, Jie
    Xie, Yuan-Mei
    Lu, Yu-Shuo
    Chen, Zeng-Bing
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Efficient decoy-state quantum key distribution with quantified security
    Lucamarini, M.
    Patel, K. A.
    Dynes, J. F.
    Froehlich, B.
    Sharpe, A. W.
    Dixon, A. R.
    Yuan, Z. L.
    Penty, R. V.
    Shields, A. J.
    OPTICS EXPRESS, 2013, 21 (21): : 24550 - 24565
  • [6] Decoy state semi-quantum key distribution
    Dong, Shuang
    Mi, Shang
    Hou, Qingcheng
    Huang, Yutao
    Wang, Jindong
    Yu, Yafei
    Wei, Zhengjun
    Zhang, Zhiming
    Fang, Junbin
    EPJ QUANTUM TECHNOLOGY, 2023, 10 (01)
  • [7] Passive Decoy-State Quantum Key Distribution with Coherent Light
    Curty, Marcos
    Jofre, Marc
    Pruneri, Valerio
    Mitchell, Morgan W.
    ENTROPY, 2015, 17 (06) : 4064 - 4082
  • [8] FINITE-KEY ANALYSIS FOR QUANTUM KEY DISTRIBUTION WITH DECOY STATES
    Song, Ting-Ting
    Zhang, Jie
    Qin, Su-Juan
    Gao, Fei
    Wen, Qiao-Yan
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (5-6) : 374 - 389
  • [9] New decoy state quantum key distribution for increasing the security communication distance
    Liu D.
    Pei C.-X.
    Quan D.-X.
    Han B.-B.
    Zhao N.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2010, 37 (01): : 13 - 17
  • [10] Decoy-state method for quantum-key-distribution-based quantum private query
    Liu, Bin
    Xia, Shuang
    Xiao, Di
    Huang, Wei
    Xu, Bingjie
    Li, Yang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (04)